TOPOLOGICAL GALOIS THEORY

ZHENYE QIAN

ABSTRACT. This lecture note is typed by Zhenye Qian, thanks
to instructor Jianfeng Lin in Yau Mathematical Sciences Center,
Tsinghua University.

CONTENTS

Lecture 1: Introduction of Modern algebra and topologyl
.1. Introductio
lassical Algebraic equation
omplex numbe
development of modern Algebr
.2.__Topology and topological spac
Introduction of Topology
uotient topolo
Lecture 2: the Fundamental group of topological spaceﬂ
1. roup theor
eview of Grou
Homomorphis
.2. the Fundamental Group of topological spac
Path and path-connecte
Homotopy between paths and Fundamental Groupl
.3. __the Fundamental group of S
Convering spac
Lift property of path
Proof of w(SY) =

E the fundamental theorem of Algebra: Prooii
Lecture 3: Solvable groups and Uniformization groupl

Date: February 17, 2025.



TOPOLOGICAL GALOIS THEORY

E Lift property of regular gathé
. Lecture4: proof of Abel-Ruffini theorem and Hilbert 13tH

roble

1. _Solvable multivalued functio
ommunator loops and Lift propert
omplexity formul

2. __topological proof of Abel’ theoreIrJ

Zariski topolo

the Statement of Abel’s theoreﬂ
roof of Abel’s theore

3. __Hilbert 13th proble

the Statement of Hilbert 13th proble

Kolmogorov-Arnold representation theore

23
23
23
23
24
25
25
26
27
27
27



TOPOLOGICAL GALOIS THEORY 3

We give a schedule of following lectures:

Lecture 1 Introduction of modern Algebra and Topology.

Lecture 2 the Fundamental group of topological spaces and the topologi-
cal proof of the fundamental theorem of Algebra.

Lecture 3 Solvable groups and uniformization group of multivalued func-
tions.

Lecture 4 Topological Galois theory, proof of Abel-Ruffini theorem and
Hilbert 13th problem.
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1. LECTURE 1: INTRODUCTION OF MODERN ALGEBRA AND
TOPOLOGY

1.1. Introduction.
§ Classical Algebraic equations. First we recall the solution of Qua-
dratic equation

(1) > +pr+q=0
Via completing the square, we have

23)2_292—461
(:Hz Ty

then the solution will be represented by

2) Lo TPEVP —4g
2

and we denote the right term by A, that is A := ’%. Thus

(1) A > 0, the equation [ has TWO different solutions;
(2) A =0, the equation [l has the ONLY solution;
(3) A <0, the equation [If has complex® solutions.

Furthermore, we can be more focus on the Cubic equation

XP+bX*+cX+d=0
Use a well-known transformation X = :U—g, we can delete the quadratic

term in the polynomial above and get the following eqution
(3) 2 +pr+q=0
Then we let x = u + v, and obtain that

2® — 3uvr — (u® +v*) =0

compared with the equation m, we have

—q=ud+v3
and use the Vieta theorem, the eqations above will be regarded as

the following Quadratic equation

2 p’
0 4+qd—==0
=" 97
11 you have learned complex number, which is defined by following form:
z=a+i8, ao,feR

where R is the real number field.



TOPOLOGICAL GALOIS THEORY 5

where [ is the variable. Via equation E, it is no hard to let

4p3
g e
2
3
o8 = TV
= 2
Thus the solution will be

5| a\* | (P\* | 3 4 q\* | (P\?
O
! ¢ 2 2) T\3) TV 2Ty e) T3
which is called the Cardano formula. Similarly, let
a\?* , (P)?
a:=(3) +(3)
2 * 3
A natural question is that: If A < 0, if which means the equation E
has no real solutions? In fact, the equation
2 —6r—4=0
where A = —4 < 0, but the solutions will be
.1'1:—2, 513'2:1—|—\/§, $3:1—\/§

Another interesting example is

1
4o =32 — = =0
T X 5

where A = —% < 0. But use the formula of Triple Angles, that is

1
4cos®f — 3cosf — 3 =0

the equation above has three real solutions ! that is

2 8 147
T4 = CO0S—, T =COS—, X1 = COS—

9 9 9

However, via Galois theory, these numbers won’t be calculate by fi-
nite +, —, X, + or rooting arbitary number odd times or rooting non-
negative number even times !

§ Complex number. Thus we must extend the number category to root-
ing negative numbers, which is called the complex number, we have
introduce it above, and recall some operations:

(a+1ib) + (c+1id) :== (a+c) +i(b+d)
(a+1b) - (c+1id) := (ac — bd) + i(ad + bc)

where i means the imaginary unit, and i> = —1. And it is easy to
verify all complex numbers (denoted by C) become a field.
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definition 1.1. Let F and two operations +, XE, we call F a field, if
+, X satisfy
(1) communative law: a +b=0b+a, ab=ba, Va,b€F.
(2) associative law: a+(b+c) = (a+b)+c, a(bc) = (ab)c, Va,b,c €
F.
(3) distribution law: (a + b)c = ac+ bc, Va,b,c €F.
(4) unit there is 0,1 € F, such that 0 +a =a, la=a, Va€F.
(5) Inverse For all elements 0 # a € F, there are —a,1/a € T,
such that —a+a =0, 1/a x a = 1.

After we recall the gemetry representation of complex numbers. Such
the

(1) norm |z| :== \/a? + B2,z = a +if3;
(2) Angle Arg(z) = 0 + 2km, k € Z, where —m < tanf =
and Z denoted by integers.

<7

QI

Use the observation (called polar representation of complex number)

(4) z=r(cosf +isinf), r=|z]

It is easy to verify:

lemma 1.1. |zw| = |z]| - |w|, Arg(zw) = Arg(z) + Arg(w), z,w € C.
More useful formula is called Euler formula.

theorem 1.1 (Euler, 1748).

(5) e = cosf +isinf
where e = lim,,_, (1 + %)n, and we define

ezzl+%+§+---+§+---, zeC
Particularly, we have e™ +1 = 0.
9§ development of modern Algebra. Now, we can rooting any negative

numbers, generally, for any complex number z = re?, where r = |z
and 6 is the angle of z, the form {/z has actually n elements:

V= {r””eieﬁmr tk=0,1,---,n— 1}
Back to the problem above,

A IR R}

We can calculate this formula although A < 0. Therefore, we claim
that any 3 degree polynomial with complex coefficients can calculate

2where we ignore the simbol x.
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all roots via Cardano formula. Furthermore, Ferrari found the formula
of Quartic equation.

In fact, Gauss has proved a well-known theorem of n degree polyno-
mials, which is called the fundamental theorem of Algebra

theorem 1.2 (Gauss, 1799). Any n degree polynomial with complex
coefficients has exactly n roots.

But Abel and Ruffini proved a more surprising consequence.

theorem 1.3 (Abel, 1824, Ruffini, 1813). There are no radical solution
for general polynomial equation with at least 5 degree.

where radical solution means a formula with finite +, —, X, + and
rooting for the coefficients of equation.

But Galois estabished the Group theory and Field theory to solve this
problem by more elegant methods, which develop the modern Algebra.
We show the theorem of him.

theorem 1.4 (Galois, 1830). The polynomial equation has radical so-
lution iff its Galois group is solvable.

For example the equations
P —2x—-1=0, 2°2+2—-1=0

the left has no radical solution, but the right one does.

The Goal of this lecture and followings is to prove the fundamental
theorem of Algebra via topology methods such fundamental groups,
and introduce the Topological Galois theory developed by Arnold
in 20th centary and prove the extention of Abel-Ruffini theorem.

1.2. Topology and topological space.
§ Introduction of Topology. First we recall the concept of continuous
mappings. Consider the distance of any two point in Eucldean space

R™, for
= (21, %), Y= (Y1, Yn)
we have the distance
2 =yl i= V(@ = y)? + -+ (2 — yn)?
Then for mapping f : R™ — R", we call f is continuous at xq € R™,
if for all € > 0, there is a 6 > 0 such that

|f(x) = f(wo)| <€ |z —z0] <6
We can abstract the essential property of concepts above, we call U(C
R™) an open set, if for all x € U, there a open ball B,(x) C U, where

Bi(z):={yeR": |z —y|<r}
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thus we can define the continuous of mapping f : R™ — R" by following
language:

"We call f continuous on R™, if for all open sets U C R"”, the
preimage f~'(U) is open in R™, where
) : {z e R™: f(z) € U}
Then we can define the general topological space.
definition 1.2. Let X be a set, 7(C P(X)) (where P(X) is the power
set of X)) is called a topology of X, if

(1) 0, X € T;
(2) For any two U,V € 7, UNV C ;
(3) For {Ui}ier C 7, U;e; Ui € 7, where [ is index set.

We call (X, 7) a topological space and the elements in 7 are open.

definition 1.3. Given two topological space (X, 7), (Y, &), we call map-
ping f: X — Y is continutous, if for all U € £, we have f~1(U) € 7.
furthermore, we call f is a homeomorphism if f~! exists and f~! is
also continuous, denoted by X =Y.

A unual example is Euclidean space R with open sets like B,.(z), = €
R".

definition 1.4. Given a topological space (X, 7), and subset A(C X),
we define the subspace topology on A by

Ta:={UNA:UE€r}
and call (A, 74) a subspace of (X, 7).

9 Quotient topology. First we recall the equivalent relation ~ on
any set X, which means

(1) x ~x, Vo € X;
(2) If © ~ y then y ~ z, where z,y € X
(3) If z ~y and y ~ z, then = ~ z, where z,y,z € X.

and the equivalent class denoted by

] ={yeX:az~y}

then the set of all equivalent classes is called the quotient set, denoted
by X/ ~. Then we have a natural quotient mapping

qg: X =X/~

by & — [z] where is the equivalent class of x.
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definition 1.5. Given a topological space (X, 7) and a equivalent re-
lation ~ on X, then

Tx/m i={U C X/ ~: ¢ ' (U) € 7}
become a topology on X/ ~, we call (X/ ~,7x,.) a quotient space
of X.

Some examples are interesting.

example 1.1. We denote D"*! be closed disk in R**!:
D™= {r e R™™ 2| < 1}
and S™ be a sphere:
S"i={zeR":|z=1|}
they are all subspaces of R""!. And we have a intuitive claim:
Dt /gn o gntl

example 1.2. Consider the subspaces of plane R? and I := [0, 1].

(1) flat ring A := I*/(0,2) ~ (1, z).

(2) Mébius band M :=1%/(0,z) ~ (1,1 — x).

(3) torus T2 :=I1?/(0,z) ~ (1,z), (x,0) ~ (z,1).

(4) Klein bottle K := I?/(0,z) ~ (1,z), (z,0) ~ (1 —z,1).
In fact the spaces are not homeomorphic with each other, but we need
to establish some of invariants under homeomorphism. and in the
following lectures we will introduce them.
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2. LECTURE 2: THE FUNDAMENTAL GROUP OF TOPOLOGICAL
SPACES

2.1. Group theory.
9 Review of Groups. First we recall the concepts of groups. First we
give some of examples. Consider a set

Spi={f:{L,--- ,n} = {1,--- ,n} : fis bijectioin}
We can equip it with operation called multiplicaiton
fg=gof:5,xS,—=5,
where go f = g(f(z)), x € {1,--- ,n}. This operation satisfies asso-
ciative law, that is
flgh) = (fg)h, Vf.g,h €Sy
and all elements f € S, has inverse f~! such that
fif=fft=ides,
where id is identity. But in this example may NOT have fg = gf.
definition 2.1. Let G be a set, and a operation - : G x G — G (we
always ignore -). We call G be a group, if

(1) associative law a(bc) = (ab)c, Va,b,c € G;
(2) unit There is an element e € G, such that ea = ae =a, Va €

G;
(3) inverse Forall a € G, there is an element a~' € G such that
ala=aa"! =e.

furthermore, we call G Abelian if satisfies communative law, that is
ab=ba, Va,bedG
example 2.1. (Z,+) is a Abelian group.

example 2.2. (Z,,+) is a Abelian group, where Z,, := Z/ ~. Where
the relation ~ is defined by

r~y<—zr=y modn
example 2.3. (5,,0) is a group, we call Symmetry Group.
example 2.4. (C*, x) is a Abelian group, where C* := C — {0}.

example 2.5. Let (0" be Regular polygon with n edges. And we

consider all operations on it as follows:

e rotation anti-clockwise with angle 2’“7”, 0<k<n-—1and

denoted rotation of 2% by p, and other will be p* := po---op.
e reflection along axis of symmetry, denoted by 7.
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Then the operations with composition become a group, called Dihe-
dral Group, denoted by D,,. This group is not a Abelian group, in
fact for D5, we consider

rTopo r-l= pfl
thus which is not Abelian.
¥ Homomorphism.

definition 2.2. Given two groups G, H, we call mapping f : G — H
is a homomorphism if

f(a’b) = f(a)f(b)v Va,be G

furthermore we call f a isomorphism, if f is also a bijection.

example 2.6. recall example @ and example @, we can establish a
isomorphism

f Dy — Sg
where f(g) is a permutation of vertex of [1°. And recall example @,
we have another homomorphism

qg: Dy — 7o
by g(p) = [1], g(r) =[0].

2.2. the Fundamental Group of topological space.
€ Path and path-connected. We recall v a path in a topological space
X, where

v:I=10,1 =X
is continuous and (0), (1) are starting and endting. Particularly, we
call v closed, if 7(0) = (1), thus we can regard closed path (we also
called a loop) as
y:St = X
We call topological X is path-connected, if for all points =,y € X,
there is a path link them, that is there is

vy: I =X

such that v(0) = =, y(1) = y. Use this concept we can prove R is not
homeomorphic to C, indeed R — {0} is not path-connected but C —{0}
does.

definition 2.3. Given two path v,7n in X. We define following opera-
tions:

(1) inverse v~ : [ — X :=~(1 —1).
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(2) composition yon: I — X is denoted by

ey, tefo,1/2]
(yon)(t) == {n(% —1), te(1/2,1]
if v(0) =n(1).

9§ Homotopy between paths and Fundamental Group.

definition 2.4. Given two path 7,7 in X with same fixed starting
x and ending y . Define homotopy between ~ and 7, if there is a
continuous mapping H : I x I — X such that

(1) H(t,0) =~(t), H(t,1) =n(t);
(2) H(0,s) ==z, H(1,s) =y.

denoted by v ~ 7.
A simple fact is 7 o v~ ~ ¢, where c¢ is constant path, such as
ct)y=zxe X, Vtel

Now we can establish the Fundamental Group of topological spaces.
Consider space X, and choose a base point xy, and the following set

Q(X,z0) == {7: 5" = X :9(0) = (1) = 20}
and we define a equivalent relation ~ on Q(X, ), that is
YN == Y=
Let (X, x) := Q(X, z0)/ ~ and define the operation
(X, o) X (X, xg) = w(X, 20)
by
0] -l = [y on
theorem 2.1. (7w(X,xg),)is a group, called the fundamental group

of X with base point xy. Furthermore, we can ignore the base point xg
if X is path-connected.

definition 2.5. We call space X is simple-connected, if 7(z) = 0.

example 2.7. Let C be a convex subspace in R”, that is if x,y € C,
the line link x and y is also in C'. Then C' is simple-connected, indeed
for all loops « are homotopic to constant mapping c¢,consider

H(t,s) = (1—s)y(t)+s-c

example 2.8. S' = {z € C: |z| = 1} is NOT simple-connected, in
fact we have

m(SY) =7, ~:S' = S' ~(t) =e*is generator
and proved it later. Another example is 7(C*) = Z.
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2.3. the Fundamental group of S!. Now we want to calculate the
fundamental group of S'. Where we need the technique of covering
spaces.

9 Convering space.

definition 2.6. Consider continuous mapping f : X — X, we call f a
covering mapping, if for all x € X, there are open sets U(C X) contains

x such that f~'(U) = |,c; U;, where U; is open in X, f : Uy = U
is homeomorphism. Where | | is dijoint union. And we call X a
covering space of X. Futhermore, we call f a n covering mapping,
if any = € X has n preimages.

example 2.9. The mapping f : R — St by f(6) = > is a covering
mapping.

Proof. We quickly verify f above is covering mapping. In fact for all
z = e?™% ¢ S1 has a simple neiborhood U := {e?™ : 0 € (0y—1/4, 0+
1/4)}, the preimages are

each of them are disjoint, and we have a natural homeomorphism be-
tween U, and U. ]

example 2.10. The mapping f : C* — C* by f(z) = 2" is a n covering
mapping.
q Lift property of paths.

definition 2.7. Let f : X — X be covering mapping, and v : I — X
be a path in X, we call 7 a lift of v, if

foy=n

X
e
T lf
I X
ﬂleorem 2.2 (Lift property of paths). Given a covering mapping f :
X — X, and path vy : I — X. For any point z € f~!(7(0)), we have

(1) there is a unique lift 7 : I — X with x as starting;
(2) Suppose n: I — X satisfies n >~ v and let 77 : I — X with x as
starting, then there is 77 ~ 7. Particularly, 77(1) = 5(1).
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q Proof of 7(S') = Z. Now we use the Lift property of loops to prove
(St =7Z.

proof of w(S1) = Z. We have following steps.

Step 1 Consider covering mapping f : R — S!. And consider the
decomposition S = U UV, where

U:={e¥%0 c (0,3/4)}, V :={e*%0 c (1/4,5/4)}

Then f~Y(U) = |,z Uk, where Uy = (k,k+3/4) and f : U, —
U is a homeomorphism, so does V.

Step 2 Consider y : I — X, then I = v~ (u)Uy ! (v) and v~ 1(U), v 1(V)
are open sets in /. Use the well-known Lebesgue lemma, we can
let

O=to<ti<---<ty=1
such that for all 0 <¢ < N — 1, we have

titis]) CY ' (U) or [titin] ©y7H(V)

Step 3 Suppose [0,t;] C v~ (U), choose i such that z € U;, and define
the lift 7 on [0, t1] be

71_
0.6] 50 ¥

Similarly, we can define 7 totally. The uniqueness can be verify
in every interval [t;, t;11].

Step 4 Finally, suppose there is a homotopy between another loop n
and v, called H. Similarly we can divide I x [ into several
cubes, and every cubes in H~*(U) and H~*(V), then lift H to
H : I xI— X and which is homotopy between 77 and 7.

Step 5 Now given a loop 7 : St — S, then lift it along f toy: I — R
(One may pay attention to the lift of loops may NOT be closed
) However, we have

f(A)) =~(1) =~(0) = f(7(0))
Thus 7(1)—7(0) € Z, we define this integer be linking number
of loop 7, denoted by rot(y). For example, consider v, : ST —
St by v.(t) = €*™ then 7, (t) = nt, then rot(y) = (1) —
7(0) = n.

Step 6 Via lift property of loops, we can verify if v ~ 7, then rot(y) =
rot(n). And if loops v and 7 have the same starting and end-
ing, we can choose the lift 7 and 7 such that rot(y) = rot(n),
since rot(y) = rot(n), then J(1) = 7(1). Thus 7 and 7j can be
homotopied by

H:IxI—=R, H(ts):=(1-s7(t) +s-7(t)
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then f o H gives a homotopy between v ~ 7. And
rot : 7(S') — 7Z
a well-defined homomorphism.
O

Then we can extend the consequence above to C*. consider loop
v: S8t = C*

can we can define link number of v be

rot(y) := rot (Sl — St M)
v (8)]
For example, v, : S' — C*, by v(z) = 2", we have rot(v,) = n.
§ the fundamental theorem of Algebra: Proof. Now we use the tech-
nique of fundamental group to prove the fundamental theorem of Al-
gebra.
Suppose the polynomial

f(2) = ap2" +an 12" '+ arz+ag

has no complex root, it’s no hard to let a,, = 1. For all R > 0, consider
loop

vr St = C*, yr(2) = f(R2)
We have following three claims:

e For all R' > R, the mapping f|(..r'<zj<r} is a homotopy be-
tween g and g, then rot(vyg) = rot(yg).

e 7o = f(0) is constant mapping and rot(vy) = 0.

e Let R > |a, 1| + -+ |ao| + 1, consider ng : S' — C*, defined
by nr(z) := (Rz)"™. Then there is a homotopy between g and
nr be

n—1
H(z,s):=(1—39)y(2) +sn(z) = (Rz)" + s ( ak(Rz)k> # 0
k=1
Therefore,
0 = rot(yg) = rot(ng) =n
conflict !
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3. LECTURE 3: SOLVABLE GROUPS AND UNIFORMIZATION GROUP

3.1. Solvable Groups.
§ Subgroup and Normal subgroup. Here we review the definition of
subgroups, we call H(C G) is a subgroup of group G, if

e abe H, whena,be H;
ea'eH, whenae H

And we call a,b € G are conjugate, if there is g € G such that
gag~t =b

it is easy to verify conjugate induces a equivalent relation on GG, and the
equivalent class is called conjugate class. Obviously, every conjugate
class just has ONE element when G is Abelian.

definition 3.1. Given group G and subgroup H, we call H a normal
subgroup of G, if for all a € H, we have

gag ' € H, VYge€@
Particularly, we call G a simple group, if the normal subgroup just
are G and {e}.

example 3.1. Recall example @, and consider Ds. In fact we have

D5:{e, p’...’p4}u{7’17...,7’5}

where 7; is the reflection along ¢th axis of symmetry. Ds has 4 conjugate
classes, they are

{6}’ {P, 04}’ {va pg}’ {7"17"' a7"5}

¥ Example: Dodecahedron. Now we consider a Dodecahedron D,
one can see it in figure [lf. Which has

e 20 vertices;
e 30 edges;
e 12 faces.

One can see it in the figure m And let G = Iso(Dy2), which called the
rotation group of D;,. Where every elements in GG are rotations of
D, around some axis [ of symmetry. We have three different cases:

Case 1 rotation around a vertex: the angle is § = i%“;
Case 2 rotation around the center of edge: the angle is 6 = m;
Case 3 rotation around the center of face: the angle is 8 = j:%7T or j:%”;

We denote such three rotations subsets by By, Bg, Br, then
G:{e}I_IBVI_IBEI_IBF
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FiGUuRE 1. Dodecahedron

thus 20 30 12
|BV|:?X27 |BE|:?><17 |BV|:?X4
where | — | denotes the number of elment in a set. Therefore,

|G| =1+ |By|+ |Bg| + |Br| = 1420 + 15 + 24 = 60

Then we consider the conjugate classes in GG. First we obtain follow-
ing communative diagram:

p1
Dy —— Do

I
D, 2, D,

where p1, po is rotation around some axis [ by some angle, and g is any
element in GG, and indeed

p1=p(1,0), p1=p(g(l),0)
Thus

p(l,0) =g p(g(1),0) - g~
Which means G is "totally” smmetric:

e Any two vertices V, V'] there is g € G, such that g(V) =V".
e Any two edges E, E’, there is g € G, such that g(F) = E'.
e Any two faces F, F’, there is g € G, such that g(F) = F".

Therefore, there are 5 conjugate classes of G:
(1) {e}, just one element.

(2)

(3) All rotations around center of edges, there are 15 emelents.
(4) All j:%T rotations around center of faces, there are 12 emelents.
(5)
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Use a fact that the number of elements in subgroup H(C G) (the
order) can divide the order of G, and observe that all numbers above
plus 1 can NOT divide 60, then we get a more useful consequence:

theorem 3.1. The rotation group of Dodecahedron is a simple group.

€ Permutation and Solvable groups. We have know that for a set B,
the symmetry group of it (denoted by Sp = {B — B a bijection}), and
denoted S,, := Sp if |B| = n. For g € S,,, define the count inversion
of g by

T(Q) = {(27]) € {17 ,TL} X {17 ,n} Dl <.j7 T(]) < T(Z>}

And we say g a even permutation, if |7(g)| is an even; say odd
permutation, if |[7(g)| is an odd.

Then we quickly review the representatioin of permutations, for ex-
ample, g € S5, we may write

g=(1 2 3 4)(5)

which means that g map 1 to 2, 2 to 3, 3 to 4 and 4 to 1, and map 5
to 5. Sometimes we represent g by

1 2 3 45
2 3415
And a useful ovservation os that

|7(g o h)| and |7(g)| + |7 (h)]| like parity.

Let A, be all even permutations in S,,, which is the normal subgroup
of S,, and |A,| = n!/2. We now want to show

ISO(Dlg) = A5
To prove it, we firstly define the distance of all vertices in D5 by
d(Vi1, V) := {the least number of edges linking Vi, V5}

then we can divide all vertices into 5 classes (with 4 vertices in one
class), and in every class, the distance between each vertex is 4. Thus
every 4 vertices in one class generate a tetrahedron, denoted by
A, k=1,---.5. And we claim:

(1) g(€ Iso(Dy2)) induces an even permutation of {Ay, .-, As}.
(2) (1) induces a homomorphism Iso(D13) — Ajs, and we can prove
which is a suijection as well.

Therefore, we have

corollary 3.1. Aj is a simple group.
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Now we introduce the solvable groups. We call all forms in GG
aba " 'b!

are commutators, and all communatators in one group G become a
group, called communatator subgroup, denoted by [G, G], which is
actually a normal subgroup.

definition 3.2. Given a group G, let G := @, and define G*) be
kth communator subgroup of G by induction:

GO .— G, Gk .— [G(k_l), G(k—l)]
and define the length of G be
I(G) :== min{k : G® = {e}} € N
We call G a solvable group, if [(G) < occ.

A immediate fact is

I(G)=1<«= G #{e} and [G,G] = {e} —
G is a nontrivial Abelian group

example 3.2. Let G = Sy = Zy, then [(Sy) = 1.
example 3.3. Let G = S3 = D3, then [(S;5) = 1 frm—e.

example 3.4. Let G = S,, then GV = A, = Iso(tetrahedron). Ob-
served that

Iso(tetrahedron) = {e}U{rotation around edges}U{rotation around vertices}

Then G = {e} U {rotation around edges} = Z, x Z,, which is called
Klein group, then G® = {3}. Therefore, I(S,) = 3.

We claim that: In the examples above, when 2 < n < 4, the radical
solution need n times of composition of rootings.
Two more facts are

e The subgroups of solvable group are solvable.
e The quotient groups of solvable group are solvable.

Via corollary El!, we have

example 3.5. Let G = As, GG is NOT solvable, then S5 is NOT solv-
able, furthermore, S,, is NOT solvable, when n > 5!

3.2. Uniformization group of Multivalued functions.
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9 Multivalued function.

definition 3.3. Let X,Y be two sets, we call a mapping X — P(Y)
a multivalued function, denoted by f : X ~» Y, and define the
domain of f by

D(f) :={ve X : f(x) # 0}

example 3.6. v/— : C ~ C is a multivalued function, when z # 0,
the set y/z has two elements.

definition 3.4. Let X, Y be topological spaces, consider multivalued
function f: X ~» Y. For x € D(f), we call z a regular point of f, if
there is a open set U(C X)), such that there are a family of (disjoint with
each other) open sets {V; };c; of Y, and a family of continuous mappings

{fi : U = Vi}ier, and for all y € U, we have f(y) = {fi(y) }icr-

We denote the set of all regular points by R(f) and call R(f) be reg-
ular domain, if R(f) is open, and call z(€ R(f)— D(f)) bifurcation
point.

example 3.7. Let f = /— : C ~ C, then f is a multivalued functions,
and D(f) =C, R(f)=C

example 3.8. ¢* : C — C is a classical function, but the inverse of e*
is multivalued, which called logarithmic_function, denoted by log z.
In fact, via Euler’s formula (see theorem [1.1)), we have

log z = log |z| + iArg(z)
then we have D(log) = R(log) = C*.

example 3.9. Consider all monicpolynomials, let P, := {p(z) : 2" +
ap_ 12" Yo+ +az+ ap}, then we have isomorphism

P,=C"
We define a multivalued function
v:.pP,—C
by ¥(p) := {all roots of p}. Particularly, when n = 2, we have

p+ VP
2

U:(p,q) —
by formula E And
R(V) = P;

where P’ is seperable polynomials space, that is polynomials with no
multivalued roots.
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q Lift property of regular paths. Consider multivalued function f :
X ~Y, we call path v: I — R(f) a regular path, and 7: [ — Y is
a lift of v, if 7(¢) € f(y(¢)). Similar to theorem .9, we have

theorem 3.2. Suppose v : [ — R(f) aregular path, and z, is starting,
then

(1) there is a unique lift of v starting from yo, denoted by ¥, : I —
Y.

(2) Suppose there is another regular path 7 which is homotopic to
7, then 7, is homotopic to 7, , particularly, they have the same
ending.

definition 3.5. Given multivalued function f : X ~» Y and regular
path v from ¢ to x;. Define parallel transport M(f,v) : f(zo) —

f(21) be a mapping M(f,v)(yo) — 7,,(1)-
We have some observations:

o M(f,v): f(7(0)) — f(v(1)) depends on homotopy class of -,
thus we write M (f, [7]).

o M(f,v)=M(f,v)", thus M(f,v) is bijective.

e When 7 is a regular loop, we have a bijection

M(f,7) : flxo) = f(x1)
that is M(f,7) € Sf(a)-

theorem 3.3. Given multivalued function f : X ~» Y, choose base
point zg € R(f), then we have a well-defined homomorphism

p T (R(f), m0) = Spwe),  p(V]) := M(f,[7])

Here we say p a uniformization homomorphism and the image
of p be uniformization group of multivalued function f, denoted
by M(f,x¢). A intuitive description is that the uniformization group
M(f, xo) describes how the elements permutate when parallel tranport
along one loop, and which is a subgroup of S,,, where n = | f(x)|. Also,
we can define the complexity of multivalued function f be ¢(f) :=
max{l(M(f,xo)) : o € R(f)}. Finally, when R(f) is path-connected,
we ignore the base point, similar to the fundamental groups.

example 3.10. Consider f(z) = {/z. Choose xg =1 € R(f) = C* as
base point, then
_ 2mi
f(x()):{]-a 57"'7571 1}7 g:en
We have known that m (R(f),zo) = Z, which is generated by ~(t) =
e?™  Observed that v has n lifts

27t

Fer :[0,1] = C, Fau=E"-en
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thus
M(f,7)(E") =Fe(1) = €
Therefore, the image of generator [y] under mapping p : m (R(f), xo) —
Sf(zo) 18 cyclic permutation
o= (1 £ & ... gz—l)
which means M (3/z) = Z,,, which generated by o. Where ¢(f) = 1.
example 3.11. Recall example @, choose base point zo = p(z) =
2" —1, then U, (zo) = {1,--- ,£" '}, thus xp € R(¥,,) = P5. We claim
that
M(\Iju xO) = Sn

Proof. Choose 0 < j < k < n,the path from & to &¥, n: I — C and
another path v from &* to &, such that n(0,1), 7(0,1), ¥, (zo) are
disjoint. For ¢ € I, consider polynomial

p(z)= [ =& -(z=n1)(z—71)
i#jk, 0<i<n—1
then v : I — P? ¢+ p(2), is a loop with base point zg. And satisfies
(&7,€%) = M(V,,v) € M(¥,). Since every elements in Sy(,,) are the
product of (&7,&*), thus M (¥,,) = Sf() = Sn- O
Therefore, we have

c(Wy) =1, ¢(V3) =2, ¢(Vy) =3, ¢(¥5) =00
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4. LECTURE4: PROOF OF ABEL-RUFFINI THEOREM AND HILBERT
13TH PROBLEM

4.1. Solvable multivalued function.
¥ Communator loops and Lift property. Sometimes the lifts of loops
are not closed, we call a regular loop v : I — R(f) with base point zg
is liftable, if
p(v) : f(zo) = f(z0)

is identity, which is equivalent to the lifts of it are all closed, Similarly,
this property is ONLY dependent on homotopy class of path.

Another concept is communator loop, we call a regular loop 7 :
I — R(f) is a communator loop, if there are regular loops 7, v,
such that

T =MN 2
and we call kth communator loop, if there are (k—1)th communator
loops, 71,72, such that v = y1y27; 75 -
lemma 4.1. Let multivalued function f : X ~» Y with ¢(f) = 1, there

is a regular loop which is NOT liftable, however, any 1st communator
loop is liftable.

Proof. M(f,~) # {e}, thus there is a loop 7, such that p(vy) # e, then
v is not liftable.

suppose 7y = Y1727 Vs , we have
p(7) = p(m)p(r2)p(m) ' p(r2) ™" € M(f, o)
Since ¢(f) = 1, M(f,xo) is an Abelian group, which means p(v) = e,
~ is ilftable. O

Similarly, we can prove the theorem as follows by induction:

theorem 4.1. Given multivalued function f: X ~» Y. Then

(1) ¢(f) =k < oo iff all kth communator loops is liftable;
(2) ¢(f) = oo iff for all k£ > 0, there is a kth communator loop not
liftable.

§ Complexity formula. On the other hand, we define the composition
of multivalued functions f: X ~~ Y and g : Y ~~ Z, that is

gof:X~2Z gof(x)= ) g
yef(z)
We call a multivalued function f: X ~ Y is regular, if R(f) = X.

theorem 4.2. Suppose g a regular multivalued function, then

c(go f) < clg) +e(f)
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Proof. To simplify the proof, we suppose c(g) = 1. Let c(f) = k,
and choose a (k + 1)th communator v with base point z in R(go f).
Here we choose zy € (g o f)(xo), there is a point yy € f(xg) such that
20 € g(vo), then v = y1727; 75, where v1,7, are kth communators.
Since ¢(f) = k, 71,72 can lift to the regular loops 7,7, in Y. Thus,
¥ = V1Y9Y1 Vo Is a lift of v w.r.t. f, and is the communator loop in
Y. Finally, since ¢(g) = 1, thus 7 can lift to 4 which is a regular loop
w.r.t. g in Z, with base boint zy, then 4 is a lift w.r.t. go f, and since
4 is closed, then

clgof)<k+1
O
Given two multivalued functions f,g : X ~» Y, we say f is con-

tained in g, denoted by f C g, if for all z € X, we have f(z) C g(z).
Obviously, we have

theorem 4.3. Let f C g, and R(f) C R(g), then
c(f) < clg)

In fact, we have proved the following theorem:

theorem 4.4. Suppose f : X ~» Y is contained in
xhxBx, b bhx =y

where f; are regular, then

n

co(f) < Zf(fi)

i=1

definition 4.1. We say multivalued function f : X ~~ Y is solvable,
if e(f) < oo.

example 4.1. (1) monodrome function f is solvable, since ¢(f) =
0.
(2) function f = {/— is solvable, since c(f) = 1.
(3) logarithmic function and inverse trigonometric function are solv-
able.
(4) When n > 5, function W,, is NOT solvable, see example @

corollary 4.1. If a multivalued function is not solvable, then it can
not contain finite regular solvable functions.

4.2. topological proof of Abel’ theorem.
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§ Zariski topology.
definition 4.2. Let A C C", we call A is a Zariski closed if there

are finite polynomials fq,--- , f,, such that
A:{(Zl)-.- 7zn):fi(21’-.- ’Zn):O’ 1::1’2’... 7r’er}

Similarly, we call A is Zariski open, if C" — A is closed.

Obviously, we have
e All Zariski open sets induces a topology, we call Zariski topol-
ogy.
e The preimage of polynomial mapping of Zariski open(closed)
set is open(closed).
e The finite union of non-empty Zariski open set is non-empty.
e For n = 1, the Zariski open set is path-connected.

definition 4.3. Consider polynomials fi, -, fin; g1, - ,gm : C* —
C, we call
Lo Im

Q= (=,
g1 9m
is a rational function. And the domain of it is
U={(z1,"+,2,) €C": gi(21,- -+ ,2n) # 0}
definition 4.4. Let ky,--- , K,, be positive integers, we call
f:CnWCn> f('zl’"'>Zn):{(yl>"'ayn)€@n:yi€k\i/?i}
a rooting function. And the domain of it is

R(f):{(zlv 7Zn)zz7é07 k2>1}

y:U—>C™

is Zariski open.

Obviously, we have c(rational function) = 0, c¢(rooting function) =
1.
q the Statement of Abel’s theorem. Recall example@.

definition 4.5. Let U be a non-empty Zariski open set of P, = C",
consider composition multivalued function

fruvbemlcenl. e
where f; are rational functions or rooting functions. We call f a root-

ing formula of n degree equation, if f C ¥, |y.

remark 4.1. (1) U could not be P,, that is allow the rooting for-
mula to fail for some special polynomials.
(2) We only require ¥,|; C f, but not ¥,|y = f, that is allow
extraneous roots of rooting formula.
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example 4.2. When n = 2, consider

fp=cthciclic

where
o fi(z,w) = (2,22 —w)
d f2(Z,U]) - <z7 ﬂ)
o f3(z,w) = #

then

_ /m2 __
f(p,q) = pr 2p 1

is rooting formula.
theorem 4.5 (Abel theorem). There is no rooting formula when n > 5.

remark 4.2. In fact, if we allow some general operations to extend the
concepts of classical arithmetic, Bring have got a consequence in 1786.

theorem 4.6 (Bring, 1786). There is a "general rooting formula” for 5
degree equations, which is dependent on +, —, X, =+, NIRZ and a mul-
tivalued function

¥ :C~ C, ¥(q) := {the roots of 2° + ¢z + 1 = 0}

theorem 4.7 (Bring, Hamilton). There is a "general rooting formula”
for 6 degree equations, which is dependent on +, —, X, =, N and a
multivalued function

U : C? ~ C, ¥(p,q) := {the roots of 2%+ pz* + ¢z +1 =0}

q proof of Abel’s theorem. Now we start to proof theorem@.
Firstly, we consider a proposition:

proposition 4.1. Let U C P, a non-empty Zariski open set, consider
U,|y : U — C, then the uniformized groups

M(‘IJ)TL|U) = Sn
Thus, when n > 5, ¥, |y is NOT solvable.

Proof. Consider function o : C* — P, by o(z1,--- ,2,) = (2 — 21)(2 —
29) -+ (2 — z,). Choose polynomial p, € R(¥,,) NU, let the roots of py
bery, -+ ,r,. Choose g € Sy, then o(ry, -+ ,1ry) = 0(rg1), - s Tgm)) =
po. Therefore, (11, , 1), (Tg1), -+, Tg(my) is blong to o H({UNR(¥,,)).
oY (U N R(V,)) is Zariski open in C", thus there is a path 7 linking
(11, s7n), (Tga1), =+ s Tg(n)), then ooy : [0, 1] = UNR(V,,) is a regular
loop of W, |y with base point py. Parallel transport g along o o 7y, we
have g € M(V,|y). O
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Proof of thwm@- Let n > 5, suppose there is a rooting formula
‘I’n|UCf:Uf4(C"1«JZ(C”?W...W(CM&)C

Let V; = R(f;), since f; are rational functions or rooting functions, V;
are non-empty Zariski open. And let Uy = V}, define U; = f;*(Uiy1) N
V;, then U; is non-empty Zariski open.

Now we consider the new comppsition

f1l fl fxl
Uolo, C floy Uy "5 Uy 52 Ug v oo Uy 5" C

Since U; C R(f;), filu, are regular solvable functions. And since U, |y,
is contained in some composition of regular solvable functions, ¥, |y,
is solvable, which is in contradiction with proposition above, so we
complete the proof ! O

4.3. Hilbert 13th problem.

9§ the Statement of Hilbert 13th problem. Recall the statement of Abel’s
theorem and consequences of Bring and Hamilton. Hilbert posed a
problem in ICM at 1900, which is called the Hilbert’s 13 problem
and NOT be solved up to now.

conjecture (Hilbert’s 13 problem). 7 degree equation

4 pB gt +rz+1=0
can NOT be solved by a algebraic function with two variables.
9 Kolmogorov-Arnold representation theorem.

theorem 4.8 (Kolmogorov, Arnold). Every continuous functions with
several variables on bounded domain, can be written by several contin-
uous functions with ONE variable and composition of plus +. Specifi-
cally, for all continuous functions with several variables f : [0,1]" — R,
there is a continuous functions with one variable ¢, ,, ®,, such that

2n+1

f(zr, - zn) = Z P, <Z @p,q(xp)>

Which means that the plus
+:R? =R, (n,y)—z+y
is the unique continuous functions with several variables, for example,
Ty = elog:erlogy

can be written by the composition of e, log(—),+. Therefore, this
theorem means that the conjecture of Hilbert is fail for continuous
functions.
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