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Preface When I was a sophomore, first learned Ricci flow in 2024’s Summer School
in Geometry in USTC. This lecture note is sorted out from a lecture called ”Some
aspect of Ricci flow on non-compact manifolds” by Prof. Eric Chen in UCLA. Because
of my terrible method in Riemannian geometry and PDE /, I just understand little
part in this lecture, and most of notes are copied by the blackboard, if you find any
faults in this note(obviously-)...That’s all my problem.

Rmk: The important ideas for me at this stage are edited in red font, and the ones I
can’t verify up to now are written by gray, which I just copy the blackboard(the whole
part of Lec3 is copied from board).
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1 Lecture 1

Ricci flow
Basic
Works

Examples
& prop-
erties

Applications

Short
time

Existence

1.1 Some basic concepts in Riemannian Geometry

¶ review Riemannian Geometry First, we recall some basic concepts in Rieman-
nian Geometry, one can see more details in [15, 20, 26], or review some brief notations
in [30, 12]. Let (M,g) a Riemannian manifold with metric g, Sometimes we ignore g
and just denote M .

† Levi-civita connection A Levi− civita connection on any vector field of M ∇
is a connection

∇ ∶ Γ(TM) × Γ(TM) → Γ(TM)
s.t.

1. torsion − free: ∇XY −∇YX = [X,Y ]

2. metric − compatibility: ∇g = 0

† Riemannian curvature tensor Denote R(X,Y ) ∶= ∇X∇Y − ∇Y∇X = ∇[X,Y ],
and a Riemannian curvature tensor is a (0,4)−type tensor

Rm(X,Y,Z,W ) = RijklX
iY jZkW l

where Rm(X,Y,Z,W ) ∶=< R(X,Y )Z,W >.

† sectional curvature A sectional curvature on X ∧ Y is defined by

K(X,Y ) ∶= R(X,Y,X,Y )
<X,X >< Y,Y > − <X,Y >2

† Ricci curvature & scalar curvature A Ricci curvature is defined by

Ric(X,Y ) ∶= trRm(X,−, Y,−)

and scalar curvature
R ∶= trRic

2



¶ curvature & topology

† Question 1 What does curvature tell us about topology?

Let M a m dimensional Riemannian Manifold with the Riemannian Metric g, then
we have

• If sectional curvature K ≡ const, then

1. M ≅ Sm/Γ or

2. M ≅ Rm/Γ or

3. M ≅ Hm/Γ,

where Γ ∈ Isom(M), one can see more ditails in [6].

• If Ricci curvature Ric = λg, where λ ≡ const and m ≥ 3, we call M a Einstein
manifold in this case. We shall show some basic properties of such manifold
under the RF in subsection1.3.

• If scalar curvature R ≡ const, which links to the Y amabe Problem1.

conjecture 1 (Yamabe,1960). 2 Let M a closed Riemannian manifold of dimension
m ≥ 3, is there a metric g̃ conformal to g that has constant scalar curvature R?

† Question 2 Given M , can deform g to g̃ with a nicer curvature?

If m = 2, we say this question is solved by uniformization, and we shall show it in
the subsection1.4.

1.2 Ricci flow Motivation

¶ definition

definition 1.1 (Hamilton,1982). Let M a Riemannian manifold, a Ricci flow3 is a
family of metrics g(t) in Mm, with t ∈ I ⊂ R, s.t.

∂tg = −2Ric(g)

¶ harmonic coordinates

definition 1.2. Let M a Riemannian manifold, a coordinate chart (U,φ) with param-
eters (x1,⋯, xm) is harmonic, if △gxi = 0, i = 1,⋯,m.

remark 1.1. We have RF

Ricij = −
1

2
△ gij + l.o.t

under the harmonic coordinate.
1How to find a nice metric s.t. R ≡ const.
2This problem has been solved by R.Schoen in 1984, one can see [28].
3denoted by RF.
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¶ Einstein-Hilbert functional

definition 1.3. We say

S(g) = ∫M RdVg

Vol(g)n−2n

is an Einstein −Hilbert functional.

One can compute the gradient of S

gradS = Vol(g)(−Ric + 1

2
g − n − 2

2n
R)

where R = ∫ R/Vol(g).

¶ heunstic picture

† m = 2 dimensions In 2 dimensions, we know that Ricci curvature can be written
in terms of Gauss curvature K as Ric(g) =Kg. Working directly from the equation

∂tg = −2Kg

, we can see that regions in where K < 0 tend to expand, and regions where K > 0 tend
to shrink. One can learn more details in [30], it’s no hard to guess that the Ricci flow
tends to make a S2 ”rounder”. This is indeed the case, and there is an excellent theory
which show that Ricci flow on any closed surface tends to make the Gauss curvature
constant, after renormalization. One can read more of this dimension in [13].

† m ≥ 3 dimensions However, we will encounter singularities at the neck pinch
in dimension over 3, one can see more about higher dimension of spheres in [1].

1.3 Some Examples and Properties of RF

¶ Einstein manifold For a Einstein manifold (M,g), we have Ric(g0) = λg0, for
some λ ∈ R, then the solution of RF(Let g(0) = g0) is

g(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − 2λtg0, t > 0 ifλ < 0
g0, t ∈ R ifλ = 0
1 − 2λtg0, t < 0 ifλ > 0

example 1.1. Let Sn with a round metric g0, we have Ric(g0) = (n − 1)g0. Then the
solution of RF is

g(t) = (1 − 2(n − 1)t)g0, t ≤ T = 1

2(n − 1)
One can see the sphere collapses to a point at time T = 1

2(n−1) . If we choose a hyperbolic

metric g0, then Ric(g0) = 1(n−1)g0 and g(t) = (1+2(n−1)t)g0, so the manifold expands
for all time.

One can link this example to subsection1.2 and it(the Einstein manifold) is a special
case of Ricci solitons which we will show in the following paragraphs.
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¶ product & quotient

• If (M,gM(t)) and (N,gN(t)) with t ∈ I are RF, then so is (M ×N,gM(t)⊕gN(t))

• If φ ∶M →M is an isometric of (M,g0) and (M,g(t)) with t ∈ [0, T ] is a solution
of RF, then φ also isometric of g(t). So quotient M/Γ is also presevered by RF.

¶ invariance properties

• time translation: If (M,g(t)) is a RF, a ∈ R, then (M,g(t + a)) is also a RF.

• parabolic rescaling: If (M,g(t)) is a RF, then (M,λ2g(λ−2t)) is also a RF.

• diffeomorphism invariance: If (M,g(t)) is a RF, ϕ ∶ M → M is a diffeom-
rophism, then (M,ϕ∗g(t)) is a RF.

¶ Ricci soliton There is a more general notion of self-similar solution than the uni-
formly shrinking of expanding solutions. To understand such solutions, we must con-
sider the idea of modifying a flow by a family of diffeomorphisms. Let X(t) a time
dependent vector fields on M , generating a family of diffeomorphism ϕt.

Let Y ∈ Γ(TM), λ ≡ const. We can find a solution of RF

−2Ric(ĝ) = ∂tĝ

, where ĝ = (1 − 2λt)g to be

−2Ric(g0) = LY g0 − 2λg0

where g(t) = g0. One can verify this solution by following proposition(Let σ(t) = 1−2λt
X = 1

σ(t)Y ).

proposition 1.1. Let σ(t) ∈ C∞(M), and define

ĝ(t) ∶= σ(t)ϕ∗t (g(t))

then we have
∂tĝ = σ′(t)ϕ∗t (g(t)) + σ(t)ϕ∗t (∂tg) + σ(t)ϕ∗t (LXg)

definition 1.4. We call ĝ ∶= (1−2λt)g0 above the Ricci soliton. Moreover, such solitons
called expand, shrink, steady, when λ < 0,> 0,= 0.

example 1.2 (Einstein manifold). Let M be any Einstein manifold and Y ≡ 0.

example 1.3 (Gauss soliton). Let M be (Rm, g0) and Y = ±s∂s, λ = ±1.

example 1.4 (Hamilton’s cigar soliton). Let M be (R2, δij/1 + s2) and Y = ∂s, λ = 0.

One can learn more details in [30, 12].
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1.4 Survey of Applications

¶ classify compact manifold of dimension m

• m = 2: independent proof of uniformization, one can see [32, 11, 10]. We also
can link this theorem to Riemann’s work in Complex Analysis, such that every
surfaces have a conformal metric of constant Gaussian curvature, or ref to Chern’s
work in Differential Geometry.

• m = 3: Thurstons geometrization, one of the special cases of it is Poincare
conjugate and one can see [25].

• m ≥ 4: understand singularities of RF.

• m ≥ 5: do more surgeries.

theorem 1.1 (uniformization). Let M be a closed Riemannian manifold of dimension
m = 2, then it is conformally equivalent to one of constant sectional curvature.

conjecture 2 (Thurstons geometrization). Every 3 dimensional manifolds admits a
geometric decomposition.

One can see more details about geometric decomposition in [30].

¶ curvature pinching

• Any compact manifold (M3, g) with Ric > 0 is diffeomorphic to S3/Γ. It is the
well-known consequence of Hamilton in 1982, one can see [18].

• Any compact manifold (Mm, g) with Rm > 0 is diffeomorphic to Sm/Γ, one can
see [5].

• Any compact manifold (Mm, g) with sectional curvature s.t. K ∈ (1/4,1], then
diffeomorphic to Sm/Γ, one can see [8, 7].

• stability or instability near fixed points (Einstein metric/solitons).

¶ other applications

• Pinching in noncompact settings.

• With conored at ∞, RF behavior on noncompact manifolds(AE,AC,cylinder).

• Kahler setting of dimension 2.

1.5 Short time Existence

† Question Can we start RF to use it?

One can learn some basic parabolic theory in euclidean space or manifold in [30].
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¶ parabolic theory-linear We assume M to be closed.

definition 1.5. Let E →M a vector bundle of M , L ∶ Γ(E) → Γ(E) is a linear second
order differential operator(linear C2 operator), if in local coordinate {xi} on M and
local frame {eα} on E, we have

L(v) = [aijαβ∂i∂jvβ + biαβ∂ivβ + cαβvβ]eα
for v = vαeα
definition 1.6. Principal symbol of L is σ(L) ∶ π̃∗E → π̃∗E4, where π̃ ∶ T ∗M → M
denote a bundle projection, given by

σ(L)(x, ξ)v ∶= (aijαβξiξjvβ)eα ∈ Ex

for x ∈M,ξ ∈ T ∗xM .

definition 1.7. The equation

∂tv = L(v), v ∈ Γ(E)
is strongly parabolic if

< σ(L)(x, ξ)v, v >E≥ λ∣ξ∣2∣v∣2E, some λ > 0
example 1.5 (motivation of ∂tg = −2Ric(g), g, h ∈ Γ(Sym2T ∗M)5). If

Lhpq = △hpq = gij∇i∇jhpq = gij∂i∂j + l.o.t
then σ(L)(x, ξ)h = gijξiξjh. So

< σ(L)(x, ξ)h,h >= ∣ξ∣2∣h∣2

Thus ∂th = △h is strongly parabolic.

¶ parabolic theory-nonlinear

definition 1.8. The nonlinear PDE

∂tv = P (v), P ∶ Γ(E) → Γ(E)
such as g ↦ −2Ric(g), given by(in local coordinate {xi} on M and local frame {eα} on
E)

P (v) = [aijαβ(x, v,∇v)∂i∂jvβ + bα(x, v,∇v)]eα
is strongly parabolic, if the linear one at w ∈ Γ(E)

∂tv = [DP (w)]v
is strongly parabolic.

A well-known theorem is:

theorem 1.2. Let M a smooth manifold, E →M a vector bundle, and P ∶ Γ(E) → Γ(E)
s.t. ∂tv = P (v) is strongly parabolic at w ∈ Γ(E). Then

⎧⎪⎪⎨⎪⎪⎩

∂tv = P (v)
v(0) = w

has a unique smooth solution for t ∈ [0, ϵ) (some ϵ small).
4Note that π̃∗E is a vector bundle over T ∗M whose fiber at (x, ξ) ∈ T ∗M is Ex.
5Let E = Γ(Sym2T ∗M)
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¶ linearization of Ric Recall

∂tg = −2Ric(g)

where g,Ric(g) ∈ Γ(Sym2T ∗M)
Unfortunately, as we have shown,

proposition 1.2. The linearization of −2Ric is

[D(−2Ric)]hij = gpq∇p∇qhij −LXg + l.o.t

, but which is NOT strictly parabolic, where X = (divh − 1
2∇trh)i = ∇jhij − 1

2∇igklhkl.

¶ DeTurck trick 6 To resolve weak parabolicity, recall [D(−2Ric)]hij = △hij −LXg+
l.o.t, where X = divh − 1

2∇trh. We fix a g to be background metric, define

W k =W (t)k ∶= g(t)pq(Γg
k
pq − Γg

k

pq)

andP ∶ Γ(Sym2T ∗M) → Γ(Sym2T ∗M) by

g ↦ LWg

this has linearization
[DP (g)]hjk = LXg + l.o.t

where X = divh = 1
2∇trh, So

∂tg = −2Ric(g) + P (g) = −2Ric(LWg)

which is Ricci-DeTurck flow.

† Question How to go back to RF? By the DeTurck trick, we get one of Hamilton’s
works in 1982, see[18].

proposition 1.3. If ϕt ∶M →M solving

⎧⎪⎪⎨⎪⎪⎩

∂tϕt(p) = −W (ϕ(p), t)
ϕ0 = id

and g(t) solves Ricci −DeTurck flow, then g̃(t) ∶= ϕ∗t g(t) is a solution of RF,

⎧⎪⎪⎨⎪⎪⎩

∂tg̃ = −2Ric(g̃)
g̃(0) = g0

, then

Finally, we get two consequences.

6One can learn some Specific description of this trick and the proof of ”existence-unique” in [30].
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theorem 1.3 (Short-time existence). Given a compact M with a smooth background
metric g0, there exists ϵ > 0 and a Ricci flow g(t) with t ∈ [0, ϵ) s.t.

⎧⎪⎪⎨⎪⎪⎩

∂tg = −2Ric(g)
g(0) = g0

theorem 1.4 (uniqueniss of RF). The RF starting from a compact M is unique.

remark 1.2. But in long time we may encounter some singularities as we have shown
in the former subsections.

¶ noncompact cases

If M is complete but noncompact with ∣Rm∣ ≤K, then short-time existence. ...
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2 Lecture 2

Ricci flow
Evolution
formulas

Uhenbeck
trick

some
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tions

Maximum
Principle

vector
S(W)MP

some es-
timates

curvature
pinching

Hamilton’s
work,1982

Singularities

2.1 Evolution formulas

† Question How does M change under RF?

¶ Uhlenbeck trick We want to find a nice frame to compute. Recall if ∂tgij = hij,
then ∂tΓk

ij = 1
2g

kl(∇ihlj +⋯). Observe that (M,g(t)) with t1 ∈ [0, T ) is a Ricci flow and

since d
dtei(t) = Ric(ei(t)). Then note

d

dt
gt(ei(t), ej(t)) = −2Ric(eit, ej(t)) +Ric(ei(t), ej(t)) +Ric(ei(t), ej(t)) = 0

fixed metric with time-dependent frame.

definition 2.1. Let π ∶M × I →M7 and T spat(M × I) = π∗TM ⊂ T (M × I). Define a
connection

∇̃ ∶ Γ(T spat(M × I)) → Γ(T ∗(M × I)) ⊗ Γ(T spat(M × I))

by
∇̃VX ∶= ∇VX for V ∈ Γ(T spat(M × I))

and
∇̃∂tX ∶= ∂tX −Rict(X)

remark 2.1 (metric compatibility). For X,Y ∈ Γ(T spat(M × I)), we have

∇̃∂t(gt(X,Y )) = g(∇̃∂tX,Y ) + g(X, ∇̃∂tY )
7[0, T ) = I
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i.e. ∇∂tgt = 0. For example, if X,Y are independent of time, then

∇̃∂t(X,Y ) = 0

The musical isomorphism ♭, ♯ behave well with ∇̃.
corollary 2.1. If X ∈ Γ(T spat(M × I)) and Y a stationary vector field, then

(∇̃∂tX
♭)(Y ) = (∇̃∂tX)♭(Y )

and similarly for ♯.

¶ evolution of volume under RF Note ∇̃∂tg = 0, then we have ∇̃∂tdVg = 0. Fix
stationary on basis at t0 ∈ I, note then that

0 = (∇̃∂tdVg)(e1,⋯, en)

= ∂t(dVg(e1,⋯, en)) −
n

∑
i=1

dVg(e1,⋯, ∇̃T ei,⋯, en)

= ∂t(dVg(e1,⋯, en)) +
n

∑
i=1

Ric(ei, ei)dVg(e1,⋯, en)

So
∂t∫

M
dVg = −∫ RdVg

remark 2.2. Volume − normallized Ricci flow

g̃(t) = Vol(g(t))−2/ng(t)
then

∂tg̃ = −2Ric + 2
R

n

¶ evolution of Rm Our goal is to compute ∂tRm. First we have

∇̃∂tRm = ∂tRm +Ric ∗Rm
and note that

∇̃∂tRm(X,Y ) + ∇̃XR̃m(Y,T ) + ∇̃YRm(T,X) = 0
Then fix X,Y,Z static vector field commuting pairwise with ∂t and parallel at (p0, t0),
i.e. ∇X = ∇Y = ∇Z = 0.

One can see more details in [30] and we just show the consequence:

••1.
R̃m(∂t,X)Y = −

n

∑
i=1

(∇eiRm(X,ei)Y )

2.
∇̃∂tRm = △Rm +Rm ∗Rm

then
∂tRm = △Rm +Rm ∗Rm
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¶ evolution of Ric & R Recall ∇̃∂t is metric compatible, then

∇̃∂tRic = △Ric +Rm ∗Ric

i.e.
∂tRic = △Ric +Rm ∗Ric

trace again, we have
∂tR = △R + 2∣Ric∣2

¶ evolution of derivatives of Rm

1.
∇̃∂t∇Rm = △∇Rm +∇Rm ∗Rm

2. in general,

∂t∣∇kRm∣2 ≤ △∣∇kRm∣2 − 2∣∇k+1Rm∣2 +Ck,n ∑
i+j=k

Rm∣∇jRm∣∣∇kRm∣

2.2 Maximum Principle and Applications

† Question What do the evolution equations for Rm,Ric, etc. tell us about their
behavior under RF?

¶ maximum principle

theorem 2.1 (scalar weak maximum principle). Let M be compact, with a family of
metrics {g(t)}t∈[0,T ) and u ∈ C∞(M × [0, T )]) s.t.

∂tu ≤ △u +Xt∇u + f(u, t)

where Xt is a smooth vector field and f is a smooth function, with u ≤ ϕ on M × {0}
and ∂tϕ ≥ f(ϕ(t), t), ϕ ∈ C∞([0, T )]). Then

u(−, t) ≤ ϕ(t)

everywhere.

theorem 2.2 (strong maximum principle). If M is connected, u(x, t) ≤ ϕ(t) on M ×
[0, T ] and u(x0, T ) = ϕ(T ), then u(x, t) = ϕ(t) on M × [0, T ].

¶ application of maximum principle(on R) Let E = Ric − R
n g, we have

∂tR = △R + 2∣Ric∣2 = △R +
2

n
R2 + 2∣E∣2] ≥ △R + 2

n
R2

If g(t) a RF, R ≥ R0 at t = 0, then

ϕ(t) = 1
1
R0
− 2

nt
, ∂tϕ =

2

n
ϕ2, ϕ(0) = R0

Since weak maximum principle, we have

R(x, t) ≥ ϕ(t) ≥ R0
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corollary 2.2. Following are corollaries:

• R(−,0) ≥ R0, sufficiently small, R ≥ − n
2t ;

• ancient flow, we have R ≥ 0;

• If R(−,0) ≥ R0 > 0, then T < n
R0
;

• immortal flow, t ≥ 0, we have minR(−, t) ≤ 0;

• eternal flow, we have Ricci flat for compact ones.

¶ curvature/derivative estimates

theorem 2.3. Let (M,g(t)) a compact RF with ∣Rm∣ ≤K on [0, T ), then

∣∇kRm∣ ≤ ClK

tl/2
, t ∈ [0, 1

K
]

¶ long-time existence criterion

theorem 2.4. If (M,g(t))t∈[0,T ) is a compact RF, T maximal, then

lim
t→T
∣∣Rm∣∣∞ = +∞

2.3 Curvature Pinching

† Question How does RF improve in long time cases?

¶ vector-valued maximum principle We assume that M to be compact, and g(t)
be arbitrary family of Riemannian metrics.

1. E →M × [0, T ) a Euclidean vector bundle with metric compatible connection ∇,
denote lift of ∂t is ∇∂t .

2. C ⊂ E is a subbundle, Cx,t = C ∩Ex,t ⊂ Ex,t is parallel in spatial direction, i.e. if
γ(s) spatial, e(0) ∈ Eγ(0),t and ∇γ̇(s)e(s) = 0, then e(s) ∈ Cγ(s),t.

3. Φ is a smooth vector field on each fiber Ex,t s.t. flow of ∇∂t + φ preserves C.

4. u ∈ C∞(M × [0, T );E) s.t. ∇∂tu = △u + φ(u).
theorem 2.5 (vector WMP). In above setting, if u takes value only in C on M × {0},
then u takes values only in C throughout M × [0, T ).
example 2.1. Fixed g and E a trivial bundle. ∂tu = △u+f(u), and u(−,0) ≤ φ(0), ∂tφ ≥
f(φ). Let Φ = f , Cx,t = [f(t),∞), then we get scalar WMP.

example 2.2. g(t) is a RF, ∇ from Uhlenbeck trick

∇∂tRic = △Ric +Q(Ric,Rm)

when m = 3, Rm ≅ Ric.
theorem 2.6 (vector SMP). Same setting, if u takes values in C, u(x0, t0) ∈ ∂Cx0,t0 at
some (x0, t0) then u only takes values in ∂C on M × [0, t0].
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¶ application Now we show the consequence of Hamilton in 1982, see [18].

theorem 2.7. If (M,g(t))t∈[0,T ) a compact RF and Ric(g(0)) ≥ 0, then Ric(g(t)) ≥ 0
for all t ≥ 0, and either

• Ric(g(t)) > 0 for all t > 0;

• (M,g(t)) flat;

• M is a quotient of N2 ×R, N is a 2− sphere.

remark 2.3. In fact, for Ric = diag(λ1, λ2, λ3) with λ1 ≤ λ2 ≤ λ3 and ϵ ∈ [0,1], then
{Ric ∶ λ1 ≥ ϵλ3 ≥ 0}

is preserved by RF and

{Ric ∶ λ3 − λ1 ≤ (λ1 + λ2 + λ3)1−δ}
preserved.

We note that

0 ≤ 1 − λ1

λ3

≤ 3λδ
3

the eigenvalues pinched when curvature large, after showing

Rmax

Rmin

→ 1 as t→ T (when Ric(g0)) > 0

Then we have(see [18]):

theorem 2.8 (Hamilton,1982). If (M3, g0) is a compact one with Ric(g0) > 0, then
M3 ≅ S3/Γ

remark 2.4. In higher dimension we need other pinching. The preserved conditions
are:

•
Rm =W +E ∧ g +Rg ∧ g

where (M,g) s.t. ∣Rm∣ < ϵnR, then M ≅ Sn/Γ, for n ≥ 4.

•
Rm ∶

2

⋀T ∗M →
2

⋀T ∗M

where Rm ≥ 0(imply sectional curvature K ≥ 0) is preserved under RF in any
dimension....

• PIC:positive isotropic curvature. Let ⋀2
C T

∗M , Rm(ω,ω) ≥ 0 for certain ω, then

WPIC2Ô⇒WPIC1Ô⇒WPIC

Imply that
sec.K ≥ 0Ô⇒ Ric ≥ 0Ô⇒ R ≥ 0

And
PIC1 > 0Ô⇒ converge to round Sn/Γ
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3 Lecture 3

3.1 Singularity behavior

Recall that sometimes (normalized) RF converges.

† Question What happens/ what do we ”neckpinch” do at nontrivial singulari-
ties? We offer an example in [1].

¶ idea/outline There are two ideas to solve this question.

• Parabolic rescaling: Recall that λ2
i g(ti + λ−2t) is preserved under RF, such as

for λi = ∣Rm1/2∣ → ∞ as t→ T . Where we need

– compactness theory for manifolds of Ricci flows.

– desctiption of sing models (3D classification).

• Surgery

¶ Cheeger-Gromov compactness

definition 3.1. Let (M,gi, pi) → (M∞, g∞, p∞) a family smooth complete pointed Rie-
mannian manifolds, if we have

p∞ ∈ Int(Ω1) ⊂ Ω1 ⊂ Ω2 ⊂ ⋯ ⊂M∞

a conpact exhaustion. Diffeomorphism onto their image

ϕ ∶ Ωi →Mi s.t.ϕ(p∞) = pi

and
ϕ∗i gi → g∞

is locally smoothly.

example 3.1. Asymptotically Euclidean: (Mn, gi, pi) = (Mn, g, pi) → (Rn, δij).

remark 3.1. If (Mi, gi, pi) → (M∞, g∞, p∞) by CG, then

sup
i∈N

sup ∣∇kRm(gi)∣ < ∞ for all s > 0, k

inf
i
inj(M,gi, pi) > 0

theorem 3.1 (Cheeger-Gromov). Converse of the above is true up to talcing subse-
quences.
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¶ compactness of Ricci flow

theorem 3.2. If (Mn, gi(t), pi)t∈(a,b) a sequence of RF s.t.

•
sup
i

sup
M×(a,b)

∣Rm(gi)∣ < ∞

•
inf
i
inj(Mi, gi(0), pi) > 0

then exists (Mn
∞, g∞, p∞)t∈(a,b) a RF, s.t.

(Mn
i , gi(t), pi) → (Mn

∞, g∞(t), p −∞)

in the sense:

• compact exhaustion
p∞ ⊂ Int(Ω1) ⊂ Ω2 ⊂ ⋯ ⊂M∞

• ϕ ∶ Ωi →Mi a diffeomorphism onto image s.t. ϕi(p∞) = pi and ϕ∗i g(t) → g(t).

¶ injectivity radius estimate Recall, for singularity of compact RF, t→ T , choose
(xi, t̃i) s.t. supM×[0,ti]

∣Rm∣ = ∣Rm(x, t̃i)∣. Consider rescaled RF

(M,Qig(ti + tQ−1i ), xi)

and note that ∣Rmgi ∣ ≤ g (a uniform g).

† Question By rescaling can control ∣Rmgi ∣, but also need injgi to control volume
noncollapsing, i.e.

vol(B(x, r)) ≥ α > 0
we introduce the Poincare entropy functional.

definition 3.2. Given a M , define a founctional

W (g, u, τ) ∶= ∫
M
τ(4∣∇u∣2 +Ru) − u2 logu2dVg −

n

2
log τ − n

2
log 4π − n

where ∫ u2 = 1. And the entropy is defined by

µ(g, τ) ∶= inf
u
W (g, u, τ)

Then µ(g(t), T−t) is nondecreasing in t when g(t) is a RF. Compute d
dtW (g(t), u(t), T−

t) ≥ 0 for u(t) s.t. a hear equation and gives:

theorem 3.3 (no local collapsing). If g(t) a RF on M(compact), t ∈ [0, T ], p ∈M , r
is sufficiently small s.t. ∣R∣ ≤ r−2 on Bt(p, r) then

vol(Bt(p, r))
rn

> ξ
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¶ singularity & blow up models

theorem 3.4. If (M,g(t))t∈[0,T ) a maximal RF with T < ∞ and the gi(t) are defined
as before, then

(M,gi(t), pi) → (M∞, g∞(t), p∞), t ∈ (−∞, b), for some b > 0

as RF and ∣Rm(g∞)∣(p∞) = 1, ∣Rm(g∞)∣ ≤ 1 for t ≤ 0.

† Question What singularity models occur?

In dimension m = 2, only S2 or S2/Γ in general, singularity models are ancient
solutions. Hamilton’s conjecture is that: ”Most” singularities modelled on shrink-
ing solitons.Let (M,g,X) be a shrinking soliton if −2Ric = −g + LXg, where g(t) =
∣t∣ϕ∗t g, d

dtϕt =X,ϕ0 = id, t < 0.
In dimension m = 3, all shrinking solitons are S3, S2 ×R2, One can see the work of

Perelmen in 2005 and Brendle in 2008. However, we hint that Bryant soliton is steady
but not shrinking, for −2Ric = LXg.

Here we divide the singularities to TWO categories, in the case of supt→T ∣Rm∣(T −
t) > 0.

• Type-I
sup
t→T
∣Rm∣(T − t) < ∞

• Type-II
sup
t→T
∣Rm∣(T − t) = ∞

For type-I, we have

• [24] and [16] have shown that type-I singularities of compact RF modelled by
gradient shrinking solitons.

• [4] shows that ”F-limits” of RF blow ups,

– a smooth RF spacetime away from

– a codim = 4 singularities set, singularities points of limit have blow ups are

∗ Ricci flat cones;

∗ gradient shrinkers.

3.2 reasons for Noncompact RF

¶ understand & classify solitons & singularities models

definition 3.3. A complete ancint RF (Mn, g(t))t∈(−∞,0] s.t.

• ∣Rm∣ ≤ 1;

• K − noncollapsing (∣Rm∣ ≤ r−1 on Br(x, t) imply vol(Br(x, t)) ≥K ≥ rn)
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• n = 2,3, ∣Rm∣ ≥ 0, Hamilton′s Harnack inequality.

are K − solitons.
remark 3.2. We have following hints:

• classifying K− solitons necessary for dimension of 3 RF with surgery. One can
see [27], for no nontrivial compact shrinkers in n = 3.

• classify singularities models in dimension of n.

• classigy ancient solutions(or shrinking, steady, expanding).

¶ examples of compact singularities When n = 4, we offer some examples.

example 3.2. [2] show that noncompact RF with singularities models are Eguchi −
Hanson(ALE), R4/Z2, (Bryant/Z2 or RP 2 ×R).
example 3.3. [29] show that any asymptotically canonical noncompact gradient shrink-
ing soliton appears as a singurities model of compact RF.

definition 3.4. (Mn, g) is asymptotically canonical to (Rt ×Nn−1,ds2 + s2h), if exists
diffeomorphism Φ ∶ (s,∞) ×N →M s.t.

∣∇k
s(Φ∗g − s)∣s → 0 as r →∞

remark 3.3. Some rmks:

• more generally, compact (M4, g(t)) encounters finite time singularities at T < ∞,
then (T − t)−1g(t) converges to smooth compact gradient shrinker or some blow
up converges to

– S2 ×R2;

– (S3/Γ) ×R;
– smooth Riemannian Cone g∞ = ds2 + s2h, Rg∞ ≥ 0.

• For n = 4, the RF hopefully to apply to π1(M) = 0 manifolds or 4 dimensional
manifolds admitting PSC.

¶ other applications

• Smooth noncompact metrics M asymptotically AE, R ≥ 0, one can see in [22].

• Pinching of noncompact cases, where we introduce a conjecture of Hamilton as
above.

• About AE.

theorem 3.5 (Hamilton’s pinching conjecture). (M3, g0) is complete connected with
Ric ≥ ϵR ≥ 0 for some ϵ > 0, then (M3, g0) flat or compact.

One can see [9, 23, 21].

theorem 3.6. If ∣Rm∣ < ϵR, (M,g) is an AE, then RF flows to (Rn, g0).
One can see [10].
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3.3 some Tools for Noncompact RF

¶ localized quantities & estimates

† local entropy One can see [31].

theorem 3.7. If (Mn, g(t))t∈[0,T ] is a RF s.t.

Ric ≤ (n − 1)A
n

, x ∈ Bg(t)(x,
√
t), t ∈ (0, T ]

then
µ(ΩT , g(T ), τ) − µ(Ω0, g(0)), τ + T ≥ −A−2

for τ ∈ (0,A2T ), A is large, where ΩT = Bg(T )(x0, δA
√
T ),Ω0 = Bg(0)(x0,2δA

√
T ).

† Nash entropy One can see [19, 3]. Let M , and τ > 0,

dγ = (4πτ)−n/2d−fdVg

and
N[g, f, τ] = ∫

M
fdγ − n

2

the pointed Nash entropy at (x0, t0) is

Nx0,t0 = N[gt0−τ , ft0−τ , τ]

where f s.t.
dγ = (4πτ)−n/2e−fdg

is conjugate heat kernel
−∂t −△ +R = 0

and
d

dτ
(τNx0,t0(τ)) =W [g0 − τ, ft0−τ,τ ] ≤ 0

† pseudocality

theorem 3.8. Exists ϵ, δ > 0 s.t. if (Mn, g(t)), t ∈ [0, ϵr0] is a RF and

• R ≥ −r20;

• ∣∂Ω∣n ≥ (1 − δ)cn∣Ω∣n−1 for all Ω ⊂ B0(x0, r0) open, cn isop constant in Rn. Then
for any t ∈ [0, (ϵr0)2] and x ∈ Bt(x0, ϵr0),

∣Rm∣(x, t) ≤ t−1 + (ϵr0)−2

Which control ∣Rm∣ with local Euclidean property and R lower bounded.
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¶ maximaum principle

theorem 3.9. If (M,g(t)) is a complete solution to RF on noncompact one, with
∣Rm∣ ≤K on [0, T ],

∂u

∂t
≤ △u+ < ∇u,X > +F (u, t), ∣u(x, t)∣ ≤ exp(A(d(0,X) + 1))

and U(t) solving

dU

dt
= F (u, t)

u(x,0) ≤ U(0) for all x ∈M

then u(x, t) ≤ U(t) for all x ∈M, t ∈ [0, T ].

¶ weighted spaces ...

3.4 Sketch of some recent developments

¶ canonical expanders in 4 dimension Recall: compact 4 dimension RF with finite
time singularities, blow up: compact smooth gradient strinker cylindrical, canonical
cone γ with Rγ ≥ 0.

† Question How to resolve 4 dimension canonical singularities? One can see
[14, 17].

† Question Finding nonsymmetric cones?

Ric + 1

2
LXg +

g

2
= 0

is weakly elliptic, need to gauge.

Q(g) = Ricg +
1

2
LXg +

g

2
− 1

2
Ldivg −

1

2
∇trg

is strongly elliptic...
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ŝ{n + 1}. Mathematical Research Letters, 11(4):493–518, 2004.

[2] Alexander J Appleton. Singularities in U (2)-invariant 4d Ricci flow. University
of California, Berkeley, 2019.

[3] Richard H Bamler. Entropy and heat kernel bounds on a ricci flow background.
arXiv preprint arXiv:2008.07093, 2020.

[4] Richard H Bamler. Structure theory of non-collapsed limits of ricci flows. arXiv
preprint arXiv:2009.03243, 2020.
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