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Preface

purpose: The purpose of this note is to record the mini lecture of mean curvature flow so
that I can go back to review in the future, and also share some viewpoints of geometry flow
to peers.

When I was a sophomore, participated in the 2024’s SUMMER SCHOOL IN GEOME-
TRY in USTC and firstly learned mean curvature flow in the mini lecture called ”Topics
in mean curvature flow” teached by Dr.Zhu. I edited this lecture note which combined the
blackboard and my own understanding during summer school time, thus it may have some
errors.

I divide this note into TWO parts totally.

• The FIRST part is about introducing the mean curvature flow and some typical tools.

• The SECOND part mainly focus on singularity analysis and an special case: mean
convex flow.

I consider a classical situation to introduce mean curvature and link it to an important
object in category of PDE, and one may find much of common points between such flow and
heat equation, that’s nearly whole discussion in chapter1.

In chapter2, I mainly introduce a essential tool or property called monotonicity for-
mula, which not only implies plenty of geometry and we will compare it with the problem of
area ratio in category minimal surface but also ”hide” a new operator called conjugate
heat operator one can link it to the traditional one in PDE.

In the middle of note, I will show some of my viewpoints about singularity analysis, we
can consider different geometry flow and sum up the method to research singularity. But I’m
new to singularity analysis/.

In chapter4, I will introduce some basic topics in Geometry Measure Theory, to
prepare some of measure tools for the last chapter, one can learn more in [8].

In the end, I want to discuss an important flow in category of mean curvature flow, called
mean convex flow, and show some great milestone-style works by Colding −Mincozzi.

Rmk:

1. To simplify the discussion, We just consider embedding type hypersurface in this note,
If some of consequence can be extended to general cases, I will point out.

2. We ignore some of details in proof or whole proof.
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3. This note will be updated in the future, you can download newest one in my homepage

https ∶ //zhenye −math.github.io/

Zhenye Qian

USTC,Anhui, July 15,2024

https://zhenye-math.github.io/
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Chapter 1

An Introduction to Mean curvature
flow

1.1 Motivation and Notations

1.1.1 A heuristic idea

¶ a simple relation between analysis and geometry First we consider a situation,
one can regard it to the motivation of minimal surface, see [3]. Let Ω a region in Rn and
a smooth mapping u ∶ Ω → Rn+1 without any singularities, so we can call this mapping a
hypersurface1. Then one may focus on some metric consequences of it, like the length of
curves on it or angle of them or area of the part of surface. But our question is that when
the area get maximal.

We just write down the Area variation formula

Area(u) = ∫
Ω

√
1 + ∣Du∣2

where the operatorD2 means derivative in Rn+1. One can actually get a excellent extremum
of this variation, see [3], but we just focus on the approximate formula of it

√
1 + ∣Du∣2 ≈ 1 + 1

2
∣Du∣2, as the gradient Du very small

One can also regard this situation to a very local area of surface because of the smoothness.
Then we can easily compute the Euler −Lagrange equation of it

△u = 0

which is a typical Laplacian equation, see [9, 5, 2].

remark 1.1.1. One can say that in a very local area, the minimal surface satisfies a Laplacian
equation, vice versa, and we just need this ”fuzzy” viewpoint.

1If you have know about theory of manifold, it’s no hard to add some topological conditions.
2In the following discussion, we let ∇ be Levi−Civota connection in the given Riemannian manifold, and

there is no confusion with the gradient ∇.

1



CHAPTER 1. AN INTRODUCTION TO MEAN CURVATURE FLOW 2

After the situation of Analysis, one also can calculate condition of surface and get a
geometry consequence, which means that mean curvature vanishing

H = 0

We ignore the process, one can see it in [3, 11].
Here we establish a simple relation between Analysis and Geometry, that is locally the

Laplacian equation is ”equal” to the minimal surface

△u = 0⇐⇒H = 0

¶ more ideas Then we consider situation further. In the theory of PDE, we have a kind
of equation which links to deep physical implications, like the heat conduction, see [9, 2], i.e.

△u = ∂tu

Although we have plenty of method to research this equation, a natural question from the
discussion above is that,

† Question Do we have some of Geometry relation to it?

One can be inspired by the introduction above, and just regard △u to H. Then it’s
natural to add ∂tu to the geometry one

H = ∂t

If you have learned some of Ricci flow or other geometry flow theories, it’s easy to establish
a new idea of a flow about mean curvature, and that is the most significant topic of this
note.

Rmk Actually, we did some tricks in former discussion. In fact, the development of PDE
is earlier than mean curvature flow -, which is established by Brakke in 1978(see [1]). A
well-known case is that we need lots of theories of PDE to solve the problem in geometry.

1.1.2 General cases

Now we extend these ideas to general cases. Firstly, let a embedding Mn → Rn+1 from
any smooth n − dimension manifold M to Euclidean Space of dimension n + 1, and we call
this embedding a hypersurface.

remark 1.1.2. The reason that why we choose a embedding is we can find a global defined
normal vector, because we need to consider the mean curvature. A extra advantage is that
manifold can be oriented.

Observed that M divides Rn+1 into two part, that is M becoming a boundary of a open
subset K in Rn+1, i.e. M = ∂K. If M is compact, we can choose a bounded one to be K, see
[11].
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¶ notations Now we establish some notations.

• second fundamental form(S.F.F)3

A(X,Y ) ∶=<DXY, ν >∈ R, X,Y ∈ Γ(TM), ν is a global defined normal vector

• mean curvatureOne can regardH to the trace of A, just choose a family of orthogonal
unit basis {e1,⋯, en}, then4

H ∶=
n

∑
i=1

A(ei, ei) ∈ R

Also a mean curvature vector Ð→
H ∶=Hν

1.2 Mean curvature flow and some Examples

Now, it’s natural to define the flow.

¶ definition

definition 1.2.1. Consider a family of embeddings F ∶ Mn × I → Rn+1 by (x, t) → F (x, t)
where x ∈ M, t ∈ I5, and Mt ∶= F (M, t) the image of embeddings. We call {Mt}t∈I a mean
curvature flow(MCF) if

∂tF =
Ð→
H =Hν

definition 1.2.2. M ∶= ⋃t∈I Mt × {t} is called space − time track of mean curvature flow.

remark 1.2.1. In fact, MCF can defined for immersion and higher codimension F ∶
Mn → Rn+k, and6

∂tF =
Ð→
H = ∑

i

(Deiei)�

¶ examples There are NOT too many examples of MCF, but some of typical ones, one
can see [1, 3, 4].

example 1.2.1 (Euclidean Space). Rn just have static flow.

example 1.2.2 (Sphere). Let Sn(
√
R2 − 2nt) a n− sphere in Rn+1, with radius r = R2 − 2nt.

We need R > 0 and t < R2/2n. It’s easy to check that it is a MCF by the equation

∂tF =H
3In fact, we can define a general S.F.F on any embedding manifolds, but we just consider hypersurface of

codim = 1. In this way, the S.F.F can not only be regarded as a scalar but also a vector, and we claim that
the former one is independent of the direction of normal vector ν. The case of higher codimension is more
complicate.

4remember that we don’t average it by trA/n.
5I = (a, b) or[0, T ) or(−∞,0)
6Here we denote the projection to normal bundle by � and the tangent one be ⊺.
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where F is the position function of Sn. We find that the sphere shrinks to a point when
t → R2/2n, which may be a difference compared with Ricci flow one, see [10].Observed that
the derivative respect to t of position function F can be express by r, we have

∣∂tF ∣ = r′ =
n√

R2 − 2nt
and obviously

H = n

r
= n√

R2 − 2nt
But one also can find a unique form of MCF in all radius Sn, just let Sn(r(t)), where

r(t) is the radius function just respect to time t. Because

∣∂tF ∣ = r′, H = n

r

so we have a ODE rr′ = n.

remark 1.2.2. If we use the space-time track on sphere model, just draw the S1(remember
general dimension) over the ancient one one by one. Finally we get a picture of ”space-time”,
and the track is parabolic, because we can solve the t from

r2 = R2 − 2nt

example 1.2.3 (Cylinder). We define a cylinder by Sk(
√
R2 − 2kt) × Rn−k, observed that

the principal curvatures are

{1
r
,⋯, 1

r´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
k

,0,⋯,0}

so

H = k

r
= k√

R2 − 2kt
so does ∣∂tF ∣. One can find that if k(the ”scale” of sphere) lower, the time shrinking to a
point longer.

example 1.2.4 (Graph of function). We define the Graphcal MCF7

{(x(x, t), u(x, t)), x ∈ Rn}

and it’s easy to compute

ν = (−Du,1)√
1 + ∣Du∣2

so does

−H = div
⎛
⎝

Du√
1 + ∣Du∣2

⎞
⎠

7Here the first x means a position vector in Rn, and second one is also position but be regarded as an
independent variable. when we do derivative of the ”final” position vector F , must be careful that

∂tF = (∂tx,Du ⋅ ∂tx + ∂tu)
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And the derivative of u can be written from

∂tF ⋅ ν = −H

then

∂tu =
√
1 + ∣Du∣2div

⎛
⎝

Du√
1 + ∣Du∣2

⎞
⎠

remark 1.2.3. Via some computation, we can get8

∂tu = △u −
D2u(Du,Du)

1 + ∣Du∣2 (1.1)

in the example above. It’s easy to find that the second term in the right of equation tends to
0 when Du is small, which verify our claim in section1.1 again!

1.3 Avoidance principle

Here we introduce a very intuitional and accessible property of MCF. We claim that the
MCF preserves the non-touching relation of two surfaces.

theorem 1.3.1 (Avoidance Principle). Let {Mt}t∈[0,T ) and {Nt}t∈[0,T ) be two MCFs of closed(at
least one) hypersurfaces. If M0 ∩N0 = ∅, then for all t ∈ [0, T ), we always have Mt ∩Nt = ∅.

In some books, it’s called Comparison Principle, see [4].

Proof. If Mt ∩Nt ≠ ∅ for the first time t > 0, then they must touch tangentally If not, they
touched in the ancient time, since smoothness. in a small ball B(ϵ). Let M = graghu and
N = graphv, then u, v both satisfy the formula1.1 in B(ϵ) × [ϵ2, ϵ2]. Then we let

∂tw = u − v = △w + ∫
1

0

d

ds

D2us(Du2Dus)
1 + ∣Dus∣2 ds

where
us = su + (1 − s)v

which implies d
dsu

s = u − v = w. After computation we have

∂tw = (δij + ∫
1

0

DiusDjus

1 + ∣Dus∣2 ds)Dijw + term

In a small ball above, we claim the equation is uniformly elliptic, i.e.

aijDijw + terms s.t. aijξ
iξj ≥ η∣ξ∣2, for η > 0

Then we link it to the theory of parabolic.

8One can also get

∂tu = (δij + DiuDju

1 + ∣Du∣2 )Diju
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Recall the Harnack inequality, see[2, 9]. In a small ball, such as B(ϵ) above, we have

supw ≤ C inf w, for some constant C

Also u ≥ v implies w ≥ 0 in B(ϵ), then w = 0 in a smaller ball. Finally, by the strongly
maximum principle of parabolic equation, see [2, 9], we have

w ≡ 0

which implies conflict!

Via the same method of proof above, we have following applications.

corollary 1.3.1. The distance between two M in Im(F ) is increasing.

proof(sketch). By the same method of theorem, just let 0(touching) be having a distance
d > 0.

corollary 1.3.2. The ”embedding” is preserved under MCF.

This corollary make sure that the MCF is well defined.

1.4 Short time existence

First we show a FACT that Ð→
H = △MtF

where F is the position function. Just observed that

0 =D2F (e1, e2) =DeiDeiF −DDeiei
F

=DeiDeiF −D∇eiei+A(ei,ei)ν
F

=DeiDeiF −D∇eiei
− <Df,A(ei, ei)ν

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ð→
H

>

= △MtF −
Ð→
H

Thus by the MCF, we have
∂tF = △MtF

One can discover that this is a ”heat equation” but be careful to the Laplacian operator
△Mt is defined by the manifold M and changes respect to the time t. So that’s NOT a
traditional theory of parabolic. But we have following theorem.

theorem 1.4.1. If M a closed hypersurface, then exists a unique MCF {Mt}t∈[0,ϵ) s.t. M0 =
M , for some small ϵ > 0.

proposition 1.4.1. The flow can be solved smoothly on (0, T )9 but can NOT be solved on
any (0, T ′), for T ′ > T , i.e. exists a maximal existence time.

9Here we ignore the start time, since the lack of smoothness.
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proposition 1.4.2. T is given, then we have

sup
Mt

∣A∣ → ∞, as t→ T

where ∣A∣2 = ∑n
i,j=1A(ei, ej)2.

Obviously that ∣A∣2 ≥H2/n.

remark 1.4.1. Be careful that here H may not tend to ∞! In fact, when n = 2, we have
H →∞, but n = 7 that H is finite. Also the case of 2 < n < 7 is an open question.

Proof. If ∣A∣ < C on (0, T ), then we have

∣∇lA∣ < Cl,T

on (T /2, T ) where Cl,T is a constant respect to l, T . Where implies that Mt tends to MT

smoothly. Thus we have a MCF {Mt}t∈[T,T+ϵ) starting from MT .

proposition 1.4.3. the maximal existence time T < ∞.

Proof. Just find a large ball to cover our surface M , it’s no hard to have

Mt ⊂ B(
√
R2 − 2nt)

But we know that the ball must shrinks to a point when t → R2/2n, which means Mt is not
smooth at T = R2/2n.



Chapter 2

Some simple Tools for MCF

2.1 Monotonicity formula

2.1.1 the formula

Here we introduce an important tool to research MCF, which is a monotonicity formula,
and we can find the geometry intuition at the critical position.

remark 2.1.1. Recall the classical differential geometry(see [11, 4]), we have known that
given a catenoid M , then imagine a small ball touches it. In a very local case, we can guess
the Area Ratio

vol(B(ϵ) ∩M)
4πϵ2

→ 1, as ϵ→ 0

But we also have
vol(B(R) ∩M)

4πR2
→ 2, as R →∞

because we can imagine the catenoid to be double planes in ∞, like a Wormhole.

theorem 2.1.1 (Monotonicity Formula, Huisken).

d

dt ∫M ρ(x0,t0)(x, t)dµt = −∫
M
∣Ð→H + (x − x0)�

2(t0 − t)
∣
2

where

ρ(x0,t0)(x, t) =
1

(4π(t0 − t))n/2
e
−
∣x−x0 ∣

2

4(t0−t)

is called Gaussian density. Then we have

ρ(x0,t0)(x, t) ≤ 0

so

∫
M
ρ(x0,t0)(x, t)dµt

is non-increasing.

8
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2.1.2 proof and some ideas

¶ the proof of formula

Proof. Since
d

dt ∫Mt

ρdµt = ∫
Mt

(∂tρ + ρ
d

dt
(dµt) +△ρ+ <Dρ,

Ð→
H >)dµt (2.1)

We divide the proof into three steps.

STEP1: compute the derivative of measure dµt: Observed that

d

dt
(dµt) =

d

dt
(√gdx1⋯dxn)

= 1

2

√
ggij(∂tgij)dx1⋯dxn

= 1

2
gij(∂t < ∂iF,∂jF >)dµt

where g = det(gij). Since

∂t < ∂iF,∂jF > = 2 < ∂i∂tF,∂jF >
= 2 < ∂i

Ð→
H,∂jF >

= 2∂i <
Ð→
H,∂jF > −2 <

Ð→
H,DijF >

= −2 < Ð→H,D∂iF∂jF >
= −2 < Ð→H,

Ð→
A(∂iF,∂jF ) >

Then by contraction of 1
2g

ij∂tgij, we have

d

dt
(dµt) = −∣

Ð→
H ∣2

STEP2 compute the Laplacian of ρ △ρ: Recall

△Mtf = divMt(∇Mtf)

We have

△ρ = −div(ρ ⋅ (x − x0)⊺
2(t0 − t)

)

Then

△ρ = ∣(x0 − x)⊺∣
4(t0 − t)

ρ − ρdiv((x − x0)⊺
2(t − t0)

)

= ∣(x0 − x)⊺∣
4(t0 − t)

ρ − ρ{div((x − x0)
2(t − t0)

) − div((x − x0)�
2(t − t0)

)}
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Focus on that

div((x − x0)�) =<Dei < x,x0, ν > ν, ei >
=< x − x0, ν ><Deiν, ei >
= − < x − x0, ν > < ν,Deiei >´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ð→
H

= −H < x − x0, ν >
then we have

△ρ = {∣(x − x0)⊺∣2
4(t0 − t)

− n

2(t0 − t)
− H < x − x0, ν >

2(t0 − t)
}ρ

STEP3 compute other terms:

<Dρ,
Ð→
H >= −ρ < x − x0

2(t0 − t)
,
Ð→
H >

and

∂tρ = (
n

2(t0 − t)
− ∣x − x0∣2
4(t0 − t)2

)ρ

Finally we have

(∂t +△ − ∣
Ð→
H ∣2)ρ+ <Dρ,

Ð→
H >= − ∣Ð→H + (x − x0)�

2(t0 − t)
∣
2

ρ

remark 2.1.2. Recall the formula2.1 in the proof. In fact we only have

d

ddt ∫Mt

ρdµt = ∫
Mt

(∂tρ + ρ
d

dt
(dµt)+ <Dρ,

Ð→
H >)dµt

which implies a operator

∂t − ∣
Ð→
H ∣2

but we can’t get a square of ∣Ð→H + (x−x0)
�

2(t0−t)
∣! Observed that the Laplacian operator △ vanishing

in the integration.

¶ conjugate heat equation One may find an interesting operator in our proof,

∂t +△ − ∣
Ð→
H ∣2

which is called conjugate heat kernel. Then we transform this viewpoint to analysis, and
compare it with traditional heat equation. We define an operator

□∗ = ∂t +△ + ∣
Ð→
H ∣2

where the heat kernel is
□ = ∂t −△

and the former one links to the conjugate heat equation. We show a proposition.

proposition 2.1.1. If □u = 0 and □∗v = 0, then

∫
Mt

uvdµt = const

where Mt is a closed MCF.
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¶ geometry of the formula Then we want to discover the geometry of theorem2.1.1.
Observed that the integration of Gaussian density, if ∫ ρdµt ≡ const, then

Ð→
H + (x − x0)�

2(t0 − t)
= 0

This relation is suitable for any codimension, but for 1− codim, we have a simple expression
by inner product

H + < x − x0, ν >
2(t0 − t)

To explain this phenomenon, we introduce a new concept.

definition 2.1.1. A MCF is a self − shrinker, if

Mt =
√
−tM−1, t < 0

example 2.1.1. A sphere above will be written by
√
−2nt.

proposition 2.1.2. MCF is a self-shrinker if and only if

H + < x − x0, ν >
−2t = 0, for some t < 0

Via this proposition, we claim that, if we let the formula to be ”=”, then we get a shrink!

Proof. Sufficiency. Let F̃ (x, t) =
√
−tF̃ (x,−1), where F̃ ∶ M × (−∞,0) → Rn+1. But the

direction of ∂F̃ is not to the normal one, so we need to modify it. Just consider

(∂tF )�

and compute

∂tF̃ =
1

2
√
−t

F̃ (x,−1) = 1

2
F̃ (x, t)

then

(∂tF )� =
1

2
(F̃ )� = Ð→H

Necessity. If H + <x−x0,ν>
−2t = 0, just take Ms =

√
s
tMt.

Then we go back to minimal surface, we find that the area ratio

vol(B(r)) ∩M
4πr2

is increasing from 1 to 2. And we let the position x to λx for some λ ≠ 0, the area ratio
invariant, that is the area ratio is an invariance under the trivial rescaling, so that is a
cone.Now we look at theorem2.1.1, it’s easy to find that the shrink is a parabolic cone,
that is for space − time (x, t) → (λx,λ2t).
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2.2 Gaussian density

We introduce a new notation.

definition 2.2.1. We define a function respect to a fixed position x0, fixed time t0 and a
free variable about periods of time r2

ΘM(x0, t0, r) ∶= ∫
Mt0−r

2

1

(4π)n/2rn e
−
∣x−x0 ∣

2

4r2 dµt0−r2

to be Gaussian density.

One can compare this formula with the one in theorem2.1.1, just let r2 = t0−t. It’s easy to
find that r is not only the variance of Θ If you have learned something about measure theory
of probability but also a time scale between t0 and t, and Θ is increasing as r is increasing.

If we want to describe a very local area of t0, we can get

ΘM(x0, t0) ∶= lim
r→0

ΘM(x0, t0, r)

which is independent of the scale of t.

remark 2.2.1. We can get

ΘRn(x0, t0, r) =
⎧⎪⎪⎨⎪⎪⎩

1 x0 ∈ Rn

0 x0 ∉ Rn

One can describe this formula to be characteristic function, but the 1 is not essential, that’s
why we choose a scalar 4π in the formula.

Another more geometrical explanation is that the density formula Θ is a area ratio,
which we have implied in section2.1. And we introduce a famous consequence of Brakke in
1978, one can see [1].

theorem 2.2.1 (Brakke regularity). Let M = {Mt} be a MCF, for (x0, t0) ∈ Mt0. If
Θ(x0, t0, r) < 1 + ϵ, then

∣A∣ ≤ Cr−1

in B(x0, ϵr) × [t0 − ϵ2r2, t0 + ϵ2r2]

Since the Θ is an invariance under rescaling, it’s no hard to let r = 1. Intuitively, we say
that if the area ratio is closed to 1, then the surface won’t bend too much.

2.3 Colding-Mincozzi Entropy

Now we introduce the work of Colding and Minicozzi.
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¶ Colding-Mincozzi entropy

definition 2.3.1. We define Colding −Minicozzi entropy

Ent(M) ∶= sup
x0∈Rn+1,r>0

∫
M

1

(4π)n/2rn e
−
∣x−x0 ∣

2

4r2 dµ

without a period of time, but for all x, t.

proposition 2.3.1. Let {Mt} a MCF, then Ent(M) is not increasing.
Proof. Ent(Mt) is achieved at (x0, t0), i.e.

Ent(Mt) ∶= sup
x0∈Rn+1,r>0

∫
Mt

1

(4π)n/2rn e
−
∣x−x0 ∣

2

4r2 dµ

for all s < t, we have

Ent(Mt) ≤ ∫
Ms

1

(4π(r2 + t − s))n/2 e
−
∣x−x0 ∣

2

4(r2+t−s)dµs = Ent(Ms)

remark 2.3.1. But be careful that entropy ≡ const may not imply a shrink! One can compare
it with the theory in section2.1.

However, we have following proposition.

proposition 2.3.2. Finite entropy if and only if Mt have euclidean volume growth, i.e.

vol(B(r) ∩Mt)
rn

≤ C

where C is independent of r.

Proof. We just prove necessity. For all r > 0, Ent(M) < C. Then

C ≥ Ent(M) ≥ ∫
M

1

(4πr2)n/2 e
−
∣x−x0 ∣

2

4πr2

≥ ∫
M

1

(4πr2)n/2e−1/4

= e−1/4

(4π)n/2
vol(B(r) ∩M)

rn

¶ famous consequence

theorem 2.3.1 (Colding −Minicozzi). Only polynomial volume growth entropy stable shrinkers
are

Sk ×Rn−k, k = 0,1,⋯, n
This theorem links the entropy to the shrinks.

remark 2.3.2. In fact, most of our examples are polynomial volume growth. And the stable
means that any small perturbastion will increase entropy.

proposition 2.3.3 (Colding −Minicozzi). For shrinker Mt =
√
−tM−1, we have entropy

Ent(M−1) = ∫
1

(4π)n/2 e
−∣x∣2/4

i.e. entropy is achieved at (x0, r) = (0,0).



Chapter 3

some viewpoints in Singularities
Analysis

¶ singularity phenomenon Recall proposition1.4.2, we have

sup
Mt

∣A∣ → ∞, as t→ T

Which means that we may have singularities near the maximal existence time T . This
troublesome situation is also existing in other geometry flow such as Ricci flow, see [10].

One can consider two n − sphere do connected sum with a cylinder Sk ×Rn−k, and it’s
shaped like a dumbbell. We have known that these two models can equipped with MCF

R2 − 2nt, r2 − 2kt, r << R

and the maximal time can be computed easily. Here the collapse − time of cylinder is
much lower than sphere. Intuitively, we may get a singularity at the link of two deforming
spheres. A key step of research geometry flow is researching the singularities, our methods
are rescaling, surgery see [10] etc. Similarly in the category of MCF, we attempt a way
called parabolic rescaling to present the singularities.

¶ parabolic rescaling Give any MCF {Mt}t∈I , we can perform a parabolic rescaling based
at (x0, t0) by

Mλ
t ∶= λ®

magnify

(Mt0+ λ−2t
±

slowdown

,−x0)

Here we must be careful that not only add a factor λ to magnify the local area of singularity
but also control the speed of flow! Which makes the new object Mλ

t be a flow. In this way,
we define the function of it

F λ
t (x, t) ∶= λ(F (x, t + λ−2t) − x0)

proposition 3.0.1. {Mλ
t } is actually a MCF.

Proof. Consider

∂tF
λ = λ ⋅ λ−2∂tF = λ−1

Ð→
HMt =

Ð→
HMλ

t

14
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proposition 3.0.2. Self-shrinker is invariant along parabolic rescaling based at (0,0).

Proof. Consider
Mλ

t = λMλ−2t = λ
√
−λ−2tM−1 =

√
−tM−1 =Mt

We can also find that the shrink is a cone under the parabolic rescaling.

definition 3.0.1. the space − time track of Mλ
t is defined by

DλM ∶= ⋃
t∈λ2I

λMλ−2t × {t}

Via proposition3.0.2, we claim that if M is a space-time track of a shrink then

DλM =M

Recall the formula

ΘM(x0, t0, r) = ∫
Mt0−r

2

1

(4πr2)n/2 e
−
∣x−x0 ∣

2

4r2

then we have
ΘM(0,0, r) = ΘDλM(0,0, r)



Chapter 4

Some topics in Geometry Measure
Theory

4.1 Brakke flow

¶ the relation to Radon measure Let M a hypersurface, we can get a Radon measure
µ by defined

µ(A) ∶= ∫
A∩M

dµ

† Question How can we find a way to get a surface from a given measure?

Maybe we are short of regularity. So we need to consider a tangent plane of a given
measure µ. Just define a

µx,λ(A) ∶=
µ(x + λA)

λn

We say a Radon measure µ is n − rectifiable, if

lim
λ→0

µx,λ = θHnLP

where θ is multiple numbers, H is Hausdorff measure, and P is the tangent plane Txµ. L
means that restricts to the tangent plane, that is

HnLP (A) ∶=Hn(A ∩ P )

theorem 4.1.1. If µ is integer θ ∈ Z n-rectifiable if and only if

suppµ = union of C1 manifolds ⋃ measure 0 set

remark 4.1.1. Because our family of surface may not limiting, but any measure does, so
we just define a measure with some weak conditions to get a surface on the contrary.

¶ Rrakke flow Then we can define the Rrakke flow.

definition 4.1.1. A family of Radon measure {µt}t∈I is called Brakke flow, if µt is integer
n-rectifiable almost everywhere and

d

dt ∫ fdµt ≤ ∫ −∣
Ð→
H ∣2+ <Df,

Ð→
H > dµt (4.1)

16
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where ∀f ∈ C∞0 (Rn+1). And

∫ divTxµ(Df)dµt = ∫ <Df,
Ð→
H > dµt

for any f ∈ C∞0 (Rn+1) and div(Df) =<DeiDf, ei >.

remark 4.1.2. One may confuse that the H here with the mean curvature we discussed above,
but latter one is NOT given and just satisfies the conditions.

One may also confused that why we choose such terms and a inequality but not equation
in the formula4.1. Actually, we can compare it with the monotonicity formula2.1. Recall

d

dt ∫Mt

ρdµt = ∫
Mt

(∂tρ + ρ
d

dt
(dµt) +△ρ+ <Dρ,

Ð→
H >)dµt

we find the terms, namely
d

dt
(dµt) = ∣

Ð→
H ∣2, <Dρ,

Ð→
H >

so we just choose two typical terms in monotonicity formula to ”Axiomatically defined” a
general mean curvature flow. Because we can write

d

dt ∫ fdµt ≤ ∫ −∣
Ð→
H ∣2+ <Df,

Ð→
H > dµt

However, one can actually regard the Brakke flow to the mean curvature flow, for some
regular cases like spheres. And the question about inequality is that we may not preserve
the equation in some limitation.

remark 4.1.3. Brakke flow can disapper abruptly.

theorem 4.1.2 (Brakke Compactness theorem). If {µt}t∈I is a sequence of integral Brakke
flow, then passing to subsequences µi

t → µt.

This theorem guarantee that the category of Rrakke flow is ”closed”. One may imagine
that

MCF ⊂ Brakke flow ⊂ Radon measure

namely the objects in the middle term CANNOT escapes from it, but objects in the left
term can escape, that’s one of reasons why we need to construct a new category called Brakke
flow.

remark 4.1.4. In fact, the Brakke compactness is TRUE if we consider unit regular cyclic
Brakke flow.What is the meaning of it?

Let M = {Mt}t∈[0,T ), then
sup
Mt

∣A∣ → ∞, as t→ T

As we have shown in chapter3, the blow up analysis at (p, T ) where we always assume that
p is a singularity takes (xt, ti) → (p, T ) s.t.

A(xi, ti) → ∞

Let M i
t = λi(Mti+λ−2t − xi), and M i is the space-time track of it. Via theorem4.1.2, we can

transform M i
t →M∞

t as i→∞ to an unit regular cyclic Brakke flow.
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4.2 Limit flow and Tangent flow

definition 4.2.1. {M∞
t }t∈I is called a limit flow. If (xi, ti) ≡ (p, T ), then any limit M∞

t is
called tangent flow.

For example, if the local area of a surface is smooth, then the tangent flow will tend it to
a ”plane”, but if the area is not too much smooth, then the flow tend it to a ”cone”. One
can observe that ti + λ−2i t ≥ 0, which implies t ∈ [λ2

i ti,∗) then

t ∈ (−∞,∗]

so such solution is a ancient solution. Thus the research of singularities can ref to research
ancient solution, one can compare it with chapter3.

theorem 4.2.1 (Huisken). Tangent flow is self-shrinker.

Proof. Let (xi, ti) ≡ (0,0), then

ΘM i(0,0, r) = ΘM(0,0, λ−2i r)

observed that the left term links to ΘM∞ , and we have

lim
s→0
∗(0,0, s) = ΘM(0,0)

Via theorem2.1.1, we have ”=”

0 = Θ = d

dt ∫Mt

ρdµt = ∫ − ∣H +
x�

−2t ∣
2

then it is a shrink.

theorem 4.2.2 (Ilmianen). If n = 2, tangent flow is smooth.

remark 4.2.1. But it is not true for some higher dimension, such as n = 7, the one CAN-
NOT be smooth, one can see Simon’s cone

{x2
1 +⋯x2

4 = x2
5 +⋯ + x2

8}



Chapter 5

Convexity Theory

5.1 Mean convex MCF

¶ convex hypersurface In this chapter, we mainly focus on the convex case of MCF.
Recall, in the category of differential geometry, we have defined a linear operator on hyper-
surface, called Weingarten operator which is a self-adjoint one and the spectrum can be
written

specW ∶= {λ1 ≤ λ2 ≤ ⋯ ≤ λn}
where λi can be regarded as a function respect to the point of surface, but be careful that
such functions are continuous but not C1, expect for the cases without umbilical points, see
[11]. We call λ1 the first principal curvature of W .

definition 5.1.1. We say a hypersurface is convex if λ1 ≥ 0.

It is a basic concept in differential geometry, but we hint that if λ ≥ δ > 0, then the
surface(closed) will cover a domain as we have discussed in section1.1. One can easily find
that the bounded domain K is a convex set in the category of set theory, which means that
if x, y ∈ K, then tx + (1 − t)y ∈ K for t ∈ [0,1].. Now we start to discuss the convex type
singularities.

theorem 5.1.1 (Ball theorem,Huisken). the MCF of convex hypersurface shrinks to a round
point p, i.e. tangent flow at (p, T ) is Sn(

√
−2nt).

One can link this theorem to a classical consequence in global differential geometry, that
is Liebamnn theorem, see [11]. Also, a more similar consequence is about constant mean
curvature.

theorem 5.1.2 (Hopf). Let M a compact, connected and closed surface in R3 with constant
mean curvature, if M ≅ S2, then M is actually a standard sphere.

proposition 5.1.1. If M0 is convex, then Mt is convex t > 0, whenever Mt is defined.

That is the convexity is preserved along MCF.

19
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¶ tricks Here we let A♯ a (1,1)−type tensor, s.t.

< A♯(X), Y >∶= A(X,Y )

where A is S.F.F, but sometimes we write A♯ = A.

proposition 5.1.2.
∂tA = △A + ∣A∣2A

Let C a set of all symmetric matrices with eigenvalues λ ≥ 0. If λ > 0, then µλ > 0 for
µ > 0, so C is a cone.

definition 5.1.2. We say C is a invariant cone, if it is invariant under O(n) action, namely
if A ∈ C, then PAP T ∈ C.

Which makes sure that we can change the basis freely in C. And in our cases, C is
denoted by invariant, convex cone.

definition 5.1.3. We say S.F.FA ∈ C, if the matrix < A(ei), ej >∈ C.

the invariant property makes sure the definition is well.

5.2 ODE-PDE Principle

Now we introduce an important tool in the analysis of flow. One can compare it with the
one in Ricci flow, see [10].

theorem 5.2.1 (ODE-PDE Principle,Hamilton). If C is a invariant cone, and is invariant
along the evolution of ODE

d

dt
A = ∣A∣2A

then it is invariant along the evolution of PDE

∂tA = △A + ∣A∣2A

Recall proposition5.1.2, one can also compare it with the maximum modulus principle,
i.e.

d

dt
Amin ≥ ∣Amin∣2Amin

remark 5.2.1. Invariant under ODE means that if A(0) ∈ C, then A(t) ∈ C. But for PDE
case, if A∣t=0 ∈ C, for all x ∈M0, then A(x, t) ∈ C, for all x ∈Mt, t > 0.

proof of proposition5.1.1. By theorem5.2.1, we just verify the case in ODE. Consider

d

dt

⎡⎢⎢⎢⎢⎢⎣

λ1

⋱
λn

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

∣A∣2λ1

⋱
∣A∣2λn

⎤⎥⎥⎥⎥⎥⎦
Obviously preserved in ODE, so does PDE.
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5.3 some Consequences

Now we extend the concept of convex.

definition 5.3.1. M is called k − convex, if λ1 +⋯ + λk ≥ 0.
Same method of proposition5.1.1, we have

theorem 5.3.1. k − convex is preserved under MCF.

An immediate corollary is that the mean curvature H ≥ 0 is preserved under MCF .

proof of theorem5.1.1. Recall an important estimate from Huisken

∣A∣2 − 1
nH

2

H2−δ
≤ C

then

(∣A∣
2

H2
− 1

n
)Hδ ≤ C

let A→∞, we have H ≥ ∣A∣, then
∣A∣2
H2
− 1

n
→ 0

tangent flow at singularity s.t.
∣A∣2
H2
= 1

n
Via √

λ2
1 +⋯ + λ2

n ≥
H√
n

” = ” iff λ1 = ⋯ = λn, that is a sphere.

definition 5.3.2. MCF is mean convex, if H ≥ 0.
proposition 5.3.1 (Jacobi equation).

∂tH = △H + ∣A∣2H

remark 5.3.1. Recall theorem5.2.1, one can find this formula just the trace of it.

Proof. Let M s
t ∶=Mt+s, and link to F s(−, t). And

∂tM
s
t = fν

for some function on M . Compute

∂t∂sF
s = ∂t(fν) + f(∂tν)

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
�ν

and
∂s∂tF

s = ∂s(Hν) = (∂sH)ν +H(∂sν)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
�ν

Via variation of mean curvature, we have

∂tf = ∂sH = △f + ∣A∣2f

Finally, observed that f in general, so let f =H.
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In fact, one can let any function, such f =< Ð→w,ν >, then

∂t < Ð→w,ν >= △ < Ð→w,ν > +∣A∣2 < Ð→w,ν >

remark 5.3.2. Last but not least, we claim that t > 0, then must H > 0, for elliptic point
on closed surfaces.

In the end, we show a great milestone-style consequence, and one can compare it with
theorem2.3.1.

theorem 5.3.2 (Huisken,Colding −Mincozzi). Mean convex shrinker is

Sk ×Rn−k, for k = 0,1,⋯, n

The proof is intrinsic, we ignore most of calculate, but show the last step

0 = λiλj, if λi ≠ λj

then just two cases:

1. λ1 = ⋯ = λn > 0, then Sn

2. λ1 = ⋯ = λn−k = 0 and λn−k+1 = ⋯ = λn > 0, then Sk ×Rn−k.

5.4 some topics of Mean Convex flow

5.4.1 Mean convex flow

It’s no hard to let H > 0 in this setting.

¶ noncollapsing

definition 5.4.1. Given a smooth embedded mean convex hypersurface Mn, the insribe
radius is defined by

r(x) ∶= sup{B(x + rν²
center

, r®
radius

) ⊂K}

where K is an open domain bounded by M .

We can estimate the radius

r(x) ≤ 1

λn(x)
so the curvature of surface will also influence radius. We also define

µ(x) ∶= 1

r(x) ≥
1

λn

And we need a definition to avoid the case of collapsing, such having two sheets.

definition 5.4.2. The mean convex MCF {Mt}t∈I is α − noncollapsed, for α > 0, if

r(x, t) ≥ αH(x, t)−1
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theorem 5.4.1. On a mean convex MCF of closed hypersurface

∂tµ ≤ △µ + ∣A∣2µ

in viscosity sense.

remark 5.4.1. Indeed, by Brendle,

∂tµ ≤ △µ + ∣A∣2µ −
(∇iµ)2
µ − λi

For principal direction {e1,⋯, en}, (∇iµ ∶= ∇eiµ).

corollary 5.4.1. Mean convex MCF of closed hypersurface is α − noncollapsed.

5.4.2 Convex estimate

theorem 5.4.2 (convexing estimate,Huisken − Sinestrari). Given a MCF of mean convex
closed hypersurface {Mt}t∈I , then for all η > 0, exists Cη s.t.

λ1 ≥ −ηH −Cη

on Mt.

corollary 5.4.2. In mean convex flow

liminf
λ1

∣A∣ ≥ 0, as ∣A∣ → ∞

remark 5.4.2. The mean convex limit flow is defined on ancient solution as we have discussed
above. Goal of this section is to prove an important structure theorem.

We call the flow of sequence ti before singularity time T is special flow.

theorem 5.4.3 (White’s structure theorem). Any special limit flow {M∞
t }t∈(−∞,T ) of mean

convex MCF is an ancient solution that is

1. smooth and convex until extinction at T ;

2. noncollapsed;

3. blow down limit is a unique cylinder Sk(
√
−2kt) ×Rn−k.

The part of ”smooth” is too much difficult to prove, we ignore. And the part of ”noncol-
lapsed” we have proved in corollary5.4.1.

remark 5.4.3. Where the blow down is an inverse step to blow up.

M i
t = λi(Mλ−1i

t − x0), asλ→ 0

So
ΘM∞(0,0, r) = lim

λi→0
ΘM i(0,0, r) = lim

λi→0
ΘM(0,0, λir)

Via this theorem, all limit flows are smooth, so does ancient solutions, see section4.2.
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5.4.3 Ancient solutions

definition 5.4.3. The hypersurface M s.t. H =< Ð→w,ν > is called translator Mt =M + tÐ→w .

Recall
H + < x, ν >

2
= 0

links to shrinker.

example 5.4.1 (Graphical translator). For {x × u(x)∣x ∈ Rn}

div
⎛
⎝

Du√
1 + ∣Du∣2

⎞
⎠
= 1√

1 + ∣Du∣2

example 5.4.2. Let u = u(∣x∣), u′(0) = 0, then exists rotationally symmetric translator,
called bowl soliton

u(∣x∣) ≈ x2 + l.o.t
theorem 5.4.4 (Brendle −Choi). The only uniformly 2 − convex, noncompact noncollapsed
ancient solution is bowl soliton or Sn−1 ×R.
remark 5.4.4. In R3, NO need to be 2 − convex.
theorem 5.4.5 (Angenent −Dankalopoulos − Sesum). The only uniformly 2−convex compact
noncollapsed solution is Sn and ancient ovel.

5.5 Level set flow

† Hint1 The level set flow will tell you how to ”traverse” singularity.

So here we note the method to research singularities, recall chapter3:

• rescaling;

• surgery;

• level set flow.

† Hint2 We just let the setting to be codim = 1.

The step of use this method is find a function v satisfies the set

{x∣v(x,0) = 0}

is given hypersurface M0 exactly. That’s why we only consider codim = 1. That is satisfies a
PDE

∂tv = ∣Dv∣ ⋅ div( Dv

∣Dv∣)

If v is smooth, then Mt ←→ {v(−, t) = 0}, then Mt is MCF. In other words, we transform
the problem of surface geometry flow into the problem of ”function flow”. Dv = 0, with
singularities, I guess these ideas can be applied by Sard −Brown theory and Morse theory,
see[6, 7].
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¶ arrival-time function(just for convexity) If M0 is mean convex, then

H = div( Dv

∣Dv∣) = −
1

∣Dv∣ = ∂tx

definition 5.5.1. Let
Mt =∶ {x∣v(x) = t}

If Mt is smooth then Mt is a MCF, where M0 = {x∣v(x) = 0} we call this Mt a level set flow.

One can imagine this flow just the continuous ”flow” of sections of a ”mountain”, and
it naturally pass through the ”singularity”, but may not be smooth.
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